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1. Introduction 
 

Each spring, the Experimental Forecast Program (EFP) of the NOAA/Hazardous Weather Testbed 
(HWT), organized by the Storm Prediction Center (SPC) and National Severe Storms Laboratory (NSSL), 
conducts a collaborative experiment to test emerging concepts and technologies designed to improve 
the prediction of hazardous convective weather.  The primary goals of the HWT are to accelerate the 
transfer of promising new tools from research to operations, to inspire new initiatives for operationally 
relevant research, and to identify and document sensitivities and the performance of state-of-the art 
experimental convection-allowing (1- to 3-km grid-spacing) modeling systems.   

The 2025 HWT Spring Forecasting Experiment (SFE 2025), a cornerstone of the EFP, will be 
conducted 28 April – 30 May.  This will be the third hybrid experiment with both in-person and virtual 
participation. SFE 2025 will feature morning and afternoon forecasting activities, as well as next-day 
model evaluations. As in previous years, a suite of new and improved experimental CAM guidance 
contributed by our large group of collaborators will be central to these forecasting and model evaluation 
activities. These contributions comprise an ensemble framework called the Community Leveraged 
Unified Ensemble (CLUE; Clark et al. 2018).  The 2025 CLUE is constructed by using common model 
specifications (e.g., grid-spacing, model version, domain size, post-processing, etc.) wherever possible, 
so that the simulations contributed by each group can be used in carefully designed controlled 
experiments.  This design will once again allow us to conduct several experiments geared toward 
identifying optimal configuration strategies for deterministic CAMs and CAM ensembles.  The 2025 CLUE 
includes 23 members. The SFE 2025 will also continue testing of the Warn-on-Forecast System (WoFS, 
hereafter), which produces 18-member, 3-km grid-spacing forecasts, and will be used for the 9th year to 
issue very short lead-time products.  As a first step toward operational transition of WoFS, the NWS 
Office of Science and Technology Integration (OSTI) will be conducting the WoFS runs and working with 
SFE coordinators on daily domain placement.  

With plans for operational implementation of the Rapid Refresh Forecast System (RRFS) and RRFS 
Ensemble Forecast System (REFS) in 2026, a major point of emphasis will be evaluating these systems 
relative to the operational systems they are designed to replace. Additionally, SFE 2025 will include more 
experimental configurations of the Model for Prediction Across Scales (MPAS), including several 
configurations run by NOAA’s Global Systems Laboratory (GSL) and NSSL, and an extended-range MPAS 
ensemble run by the National Center for Atmospheric Research (NCAR). Finally, SFE 2025 will expand 
the evaluations of AI NWP emulators that were first conducted last year. Specifically, a WoFS emulator 
called WoFS-Cast will be examined along with both deterministic and ensemble global AI NWP 
emulators.   

This document summarizes the core interests of SFE 2025 with information on experiment 
operations.  The organizational structure of the HWT and information on various forecast tools and 
diagnostics can also be found in this document.  The remainder of the operations plan is organized as 
follows: Section 2 provides details on model and products being tested during SFE 2025 and Section 3 
describes the core interests and new concepts being introduced for SFE 2025.  A list of daily participants, 
details on the SFE forecasting, and more general information on NOAA's HWT are found in appendices. 
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2.  Overview of Experimental Products and Models  
 

Daily model evaluation activities will occur Tuesday through Friday from 9:00 – 11:00am (CDT) 
focusing on various CLUE subsets and other models, guidance, and products.  The 2025 CLUE includes 
deterministic and ensemble forecasts using the most recent versions of the Finite Volume Cubed-Sphere 
Model (FV3), the Advanced Research Weather Research and Forecasting (WRF-ARW) model, and MPAS. 
In addition to the CLUE, the operational 3-km grid-spacing High-Resolution Ensemble Forecast system 
version 3 (HREFv3), individual HREFv3 members, and the High-Resolution Rapid Refresh version 4 
(HRRRv4) will be examined as the operational modeling baselines.  The rest of this section provides 
further details on each modeling system utilized in SFE 2025. 

   
a) The 2025 Community Leveraged Unified Ensemble (CLUE) 
 
 The CLUE is a carefully designed ensemble with members contributed by NOAA units: NSSL, GSL, 
Environmental Modeling Center (EMC), and the Geophysical Fluid Dynamics Laboratory (GFDL); and 
research groups at the National Aeronautics and Space Administration (NASA) and the National Center 
for Atmospheric Research (NCAR). All CLUE members cover a CONUS domain with convection-allowing 
resolution, except the RRFS and REFS, which cover North America, and the NCAR-MPASgbl, which covers 
the globe with a 3-km mesh.  CLUE members have 3-km grid-spacing, except NASA FV3 (2.2-km) and 
GSL-MPAS3.5 (3.5-km). Depending on the CLUE subset, forecast lengths range from 36 to 132 h. Table 1 
summarizes all 2025 CLUE contributions. Subsequent tables provide details on members in each subset, 
as well as ensembles comprising different combinations of members that will be evaluated to test 
different configuration strategies.   
 
Table 1 Summary of the 12 unique subsets that comprise the 2025 CLUE.  

Clue Subset # of 
mems 

IC/LBC 
perts 

Mixed 
Physics 

Data 
Assimilation 

Dynamical 
Core 

Agency Init. Times 
(UTC) 

Forecast 
Length (h) 

Domain 

RRFS 1 none no Hybrid 3DEnVar FV3 EMC 00, 06, 12, 18 84 N. America 

REFS 5 EnKF yes Hybrid 3DEnVar FV3 EMC 00, 06, 12, 18 60 N. America 

NSSL-MPAS 3 none no HRRR or RRFS ICs MPAS NSSL 00, 12 48 or 84 CONUS 

GSL-MPAS-RRFS 1 none no RRFS ICs MPAS GSL 00, 06, 12, 18 18 or 60 CONUS 

GSL-MPAS3.5 1 none no RRFS ICs MPAS GSL 00 36 CONUS 

GFDL-FV3 1 none no GFS cold start FV3 GFDL 00 126 CONUS 

NASA-FV3 1 none no GEOS-DA FV3 NASA 00, 12 72 CONUS 

NCAR-MPAS 8 GEFS no GEFS cold start MPAS NCAR 00 132 CONUS 

NCAR-MPASgbl 1 none no GFS cold start MPAS NCAR 00 60 Global 

NCAR-MPASctl 1 none no GFS cold start MPAS NCAR 00 60 CONUS 
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Table 2 Specifications for the Rapid Refresh Forecast System (RRFS). The RRFS is initialized from a hybrid 3DEnVar analysis and 
is the control member of the RRFS Ensemble Forecast System (REFS). The ensemble component of the 3DEnVar uses the 
RRFS Data Assimilation System (RDAS) ensemble Kalman filter. The RDAS uses a wide variety of conventional observations 
along with radar reflectivity and satellite radiance data. It also includes a nonvariational cloud analysis. For gravity wave 
drag, the small scale and turbulence orographic form drag options are used. RRFS forecasts are initialized from 00, 06, 
12, and 18 UTC with forecasts to 84 h.  

Members:  
RRFS 

ICs LBCs Micro-
physics 

PBL/SFC LSM Radiation  Cumulus Dynamical 
Core 

RRFS RRFS hybrid 3DEnVar GFS Thompson MYNN/MYNN RUC RRTMG saSAS FV3 

 

Table 3 Specifications for the RRFS Ensemble Forecast System (REFS). REFS forecasts are initialized from 00, 06, 12, and 18 
UTC with forecasts to 60 h. Schemes marked with an asterisk (*) include stochastically perturbed parameterizations (SPP) 
and those marked with a hashtag (#) include fixed parameter perturbations. 

Members:  
REFS 

ICs LBCs Micro-
physics 

PBL/SFC LSM Radiation Cumulus Dynamical 
Core 

REFS01 RRFS enkf1 GEFS m1 Thompson* TKE-EDMF/GFS RUC* RRTMG* GF-deep*+sh FV3 

REFS02 RRFS enkf2 GEFS m2 Thompson* MYNN*/MYNN* RUC* RRTMG* saSAS deep FV3 

REFS03 RRFS enkf3 GEFS m3 NSSL# MYNN*/MYNN* RUC* RRTMG* GF deep FV3 

REFS04 RRFS enkf4 GEFS m4 NSSL# TKE-EDMF/GFS RUC* RRTMG* GF-deep*+sh FV3 

REFS05 RRFS enkf5 GEFS m5 NSSL# MYNN*/MYNN* RUC* RRTMG* saSAS deep FV3 

 

Table 4 Specifications for the NSSL-MPAS CLUE members.  These members use 3-km grid-spacing covering the CONUS and are 
driven by the HRRR or RRFS.  The last two letters of each member denote the ICs and microphysics (“HN” = HRRR-NSSL 
(Mansell 2010), “HT” = HRRR-Thompson, and “RT” = RRFS-Thompson).   All NSSL-MPAS runs are initialized from 00 and 
12 UTC; the NSSL-MPAS-HN and NSSL-MPAS-HT have forecast lengths of 48 h, while NSSL-MPAS-RT runs to 84 h. 

Member:  
NSSL-MPAS 

ICs LBCs Microphysics PBL LSM Radiation Dynamical Core 

NSSL-MPAS-HN HRRR HRRR NSSL MYNN RUC RRTMG MPAS 
NSSL-MPAS-HT HRRR HRRR Thompson MYNN RUC RRTMG MPAS 
NSSL-MPAS-RT RRFS RRFS Thompson MYNN RUC RRTMG MPAS 

 

Table 5 Specifications for the GSL-MPAS-RRFSA CLUE member. These forecasts use 3-km horizontal grid spacing with 60 vertical 
levels across the CONUS. Note that the PBL parameterization is an updated version of MYNN versus what is available in 
the NCAR-maintained MPAS-Atmosphere release. The aerosol-aware Thompson-Eidhammer Microphysics 
Parameterization for Operations, or TEMPO, is used to parameterize microphysical processes and includes a 2-moment 
graupel representation with predicted density. Initial and lateral boundary conditions for aerosols are provided by RRFS 
analyses and forecasts. 

Member:  
GSL-MPAS-RRFSA 

ICs LBCs Microphysics PBL LSM Radiation Dynamical Core 

GSL-MPAS-RRFS RRFS RRFS TEMPO MYNN RUC RRTMG MPAS 

 

Table 6 Specifications for the GSL-MPAS3.5 CLUE member. These forecasts are identical to GSL-MPAS-RRFS except for having 
3.5-km horizontal grid spacing across the CONUS. Model output is post-processed to the same 3-km CONUS grid as the 
other GSL MPAS forecasts, however.  

Member:  
GSL-MPAS3.5 

ICs LBCs Microphysics PBL LSM Radiation Dynamical Core 

GSL-MPAS3.5 RRFS RRFS TEMPO MYNN RUC RRTMG MPAS 
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Table 7 Specifications for the GFDL FV3 CLUE member. GFDL’s C-SHiELD (Harris et al., 2019) is an FV3-based model that uses 
a 13-km global grid and a 3-km CONUS nest, coupled to a modified form of the GFS Physics. C-SHiELD uses version 3 of 
the GFDL In-line Microphysics (Zhou et al. 2022) and the EMC/UW TKE-EDMF PBL scheme (Han and Bretherton 2019). On 
the CONUS nest the Noah-MP LSM is used; the global domain uses the GFS Noah LSM. Initialization is cold start from 
regridded GFS real-time analyses. GFDL will provide simulations run daily at 00Z out to 126 hours to demonstrate the 
potential for medium-range prediction of convective-scale events. For more info see: http://www.gfdl.noaa.gov/shield.  

Member: 
GFDL FV3 

ICs LBCs Microphysics PBL LSM Radiation Dynamical Core 

GFDL-FV3 GFS n/a GFDL TKE-EDMF NOAH-MP RRTMG FV3 
 

Table 8 Specifications for the NASA-FV3 CLUE member. The NASA-FV3 is also known as the NASA GEOS model and will run an 
FV3-based stretched global grid.  The target resolution is a c2160 grid with 137 vertical levels, the stretching will produce 
a 2-km domain over CONUS with the coarsest global resolution of 12-km over the Indian Ocean. We will be running this 
case in a replay mode using an incremental analysis update (IAU) to our GEOS-FP 12-km production data assimilation 
system. The IAU approach permits our higher resolution model to evolve dynamically with time and avoids having to cold 
start forecasts each day.  The NASA FV3 model will produce 72 h forecasts initialized at 0000 and 1200 UTC daily. Updates 
for SFE 2025 include retuned turbulence and convection, updated GFDL-MP cloud microphysics, new radar reflectivity 
calculations using the Thompson scheme calculation that includes brightbanding, and updates to the diffusion 
parameters in FV3.  

Member: 
NASA-FV3 

ICs LBCs Micro-
physics 

PBL LSM Radiation Dynamical 
Core 

NASA-FV3 GEOS-FP None GEOS-GFDL Lock-Louis & UW Nasa Catchment RRTMG FV3 
 

Table 9 Specifications for the NCAR-MPAS ensemble members. All 8 ensemble members use NCAR’s MPAS model and identical 
physics, with ensemble diversity solely provided by ICs. These runs use a global 13-km grid-spacing domain with a refined 
3-km grid-spacing mesh over the CONUS. Initialization is cold-start from members 1–8 of real-time GEFS ICs. Simulations 
run daily at 00Z out to 132 hours. 

Members:  
NCAR-MPAS 

ICs LBCs Micro-
physics 

PBL LSM Radiation Cumulus Dynamical 
Core 

NCAR-MPAS01 GEFS m1 n/a Thompson MYNN NOAH RRTMG Scale-aware New Tiedtke MPAS 

NCAR-MPAS02 GEFS m2 n/a Thompson MYNN NOAH RRTMG Scale-aware New Tiedtke MPAS 

NCAR-MPAS03 GEFS m3 n/a Thompson MYNN NOAH RRTMG Scale-aware New Tiedtke MPAS 

NCAR-MPAS04 GEFS m4 n/a Thompson MYNN NOAH RRTMG Scale-aware New Tiedtke MPAS 

NCAR-MPAS05 GEFS m5 n/a Thompson MYNN NOAH RRTMG Scale-aware New Tiedtke MPAS 

NCAR-MPAS06 GEFS m6 n/a Thompson MYNN NOAH RRTMG Scale-aware New Tiedtke MPAS 

NCAR-MPAS07 GEFS m7 n/a Thompson MYNN NOAH RRTMG Scale-aware New Tiedtke MPAS 

NCAR-MPAS08 GEFS m8 n/a Thompson MYNN NOAH RRTMG Scale-aware New Tiedtke MPAS 

 
Table 10 Specifications for the NCAR-MPASgbl member. This member uses uniform 3-km grid-spacing covering the entire globe 

with forecasts to 60 h and is initialized from the GFS. Other aspects of the configuration are identical to the NCAR-MPAS 
ensemble members.   

Member:  
NCAR-MPASgbl 

ICs LBCs Micro-
physics 

PBL LSM Radiation Cumulus Dynamical 
Core 

NCAR-MPASgbl GFS n/a Thompson MYNN NOAH RRTMG Scale-aware New Tiedtke MPAS 

 

 

http://www.gfdl.noaa.gov/shield
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Table 11 Specifications for the NCAR-MPASctl member. This member is identical to the NCAR-MPASgbl member, but with 13-
km grid-spacing covering the globe and a 3-km refined mesh over the CONUS.  

Member:  
NCAR-MPASctl 

ICs LBCs Micro-
physics 

PBL LSM Radiation Cumulus Dynamical 
Core 

NCAR-MPASctl GFS n/a Thompson MYNN NOAH RRTMG Scale-aware New Tiedtke MPAS 

 
The configuration of the 2025 CLUE will allow for several unique experiments that have been 

designed to examine issues immediately relevant to the design of a NCEP/EMC operational CAM-based 
ensemble.  Some of the major themes are listed below: 
 
RRFS vs. Operational CAMs and REFS vs. HREF: With plans for operational implementation of RRFS in 
2026, a critical evaluation activity for SFE 2025 will involve comparing RRFS to the operational CAMs that 
EMC plans to retire once RRFS is implemented, which includes the NAM Nest, HRW ARW, HRW NSSL, and 
HRW FV3. Comparisons will be made at Day 1 lead times for 0000 and 1200 UTC initializations. Similarly, 
ensemble comparisons of REFS vs. HREF will be made at Day 1 & 2 lead times for 0000 and 12000 UTC 
initializations.  An alternative configuration of REFS designed by SPC (SPC REFS) will also be included in 
the ensemble comparisons. SPC REFS includes more HRRR and RRFS control members compared to REFS. 
See table 14 for configuration details. Finally, comparisons will be made during the first 12 h of RRFS and 
HRRR forecasts to evaluate the effectiveness of the data assimilation strategies in each system.  
 

Table 12 Ensemble members comprising two versions of REFS based at 1200 UTC. 

 REFS SPC REFS 

# Member Init. Time Member Init. Time 

1 RRFS 12Z RRFS 12Z 

2 REFS01 12Z REFS01 12Z 

3 REFS02 12Z REFS02  12Z 

4 REFS03 12Z REFS03 12Z 

5 REFS04 12Z REFS05 12Z 

6 REFS05 12Z HRRR 12Z 

7 HRRR 12Z RRFS 06Z 

8 RRFS 06Z HRRR 06Z 

9 REFS01 06Z RRFS 00Z 

10 REFS02 06Z HRRR 00Z 

11 REFS03 06Z   

12 REFS04 06Z   

13 REFS05 06Z   

14 HRRR 06Z   

 
Medium-Range CAM Ensembles: NCAR will be providing an 8-member, 0000-UTC initialized MPAS 
ensemble with forecasts to 5 days (Table 11). Severe weather forecasts derived from machine learning 
and neighborhood maximum ensemble probabilities (NMEPs) will be examined and compared to other 
methods for generating extended-range severe weather probabilities that are based on global NWP 
ensembles.  
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RRFSv2 Development Systems: NOAA/GSL will be providing two MPAS configurations (Tables 5-6), which 
are being tested to form the foundation for RRFSv2. These configurations contain the most up-to-date 
physics suites tuned for MPAS. Comparisons will be made to other deterministic CAMs such as HRRR, 
RRFSv1, and NSSL-MPAS-RT. GSL-MPAS3.5 is identically configured to GSL-MPAS-RRFS, except it uses 3.5-
km grid-spacing.  MPAS is believed to have higher effective resolution than WRF because of its 
unstructured grid and numerics; thus, this resolution sensitivity test will examine whether 3.5-km grid-
spacing could meet performance requirements while saving computational time relative to 3-km runs.  
 
Global CAM vs. Global with Refined Mesh CAM: In a first-of-its-kind test, NCAR will provide 0000 UTC, 
GFS-initialized, 60-h forecasts from a global MPAS configuration with uniform 3-km grid-spacing over the 
entire globe (Table 12; NCAR-MPASgbl). Comparisons will be made to an identical configuration that uses 
a 13-km grid-spacing global mesh with refinement to 3-km grid-spacing over the CONUS (Table 13; NCAR-
MPASctl).   
 
3D-RTMA Background and Storm-Scale Analyses: An hourly version of 3D-RTMA that uses the HRRR for 
the background first guess (3D-RTMA HRRR) will be compared to the surface objective analysis HRRR 
(sfcOA HRRR), which is created by performing a simple 2-pass Barnes analysis on surface observations 
with the HRRR analysis as the first-guess and direct use of the HRRR analysis for the atmospheric state 
above the surface. Versions of the analyses upscaled to 40-km will also be examined and compared with 
SPC’s RAP-based surface objective analysis (sfcOA). Finally, 15-minute WoFS forecasts of hourly maximum 
80-m winds, UH, and updraft speed will be compared to Multi-Radar, Multi-Sensor (MRMS) products to 
gauge whether these 15-minute WoFS forecasts are a viable proxy for observed hazards. 
 

To ensure consistent post-processing, visualization, and verification, post-processing is standardized 
as much as possible, so that a consistent set of model output fields are output on the same grid.  For the 
2025 CLUE, all groups output fields to the 3-km CONUS grid used for the operational HRRR.  For WRF-
ARW, FV3, and MPAS the Unified Post-Processor software (UPP; https://www.epic.noaa.gov/unified-
post-processor) is used and a minimum set of 49 output fields is provided at hourly intervals.  This list of 
mandatory CLUE fields is provided in Appendix C and includes fields that are relevant to a broad range of 
forecast needs, including aviation, severe weather, and precipitation.   
 

b) High Resolution Ensemble Forecast (HREFv3) System 
 
 HREFv3 is a 10-member CAM ensemble that was implemented 11 May 2021. The design of 
HREFv3 originated from the SSEO, which demonstrated skill for six years in the HWT and SPC prior to 
operational implementation as the HREF in 2017.  In HREFv3, the HRW NMMB simulations have been 
replaced with HRW FV3 and HRRRv3 has been upgraded to HRRRv4.  HREFv3 specifications are listed in 
Table 13. 
 
 
 
 
 
 

https://www.epic.noaa.gov/unified-post-processor
https://www.epic.noaa.gov/unified-post-processor
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Table 13 Model specifications for HREFv3.   

HREFv3 ICs LBCs Microphysics PBL dx (km) Vertical Levels HREF hours 

HRRRv4 HRRRDAS RAP -1h Thompson MYNN 3.0 50 0 – 48 

HRRRv4 -6h HRRRDAS RAP -1h Thompson MYNN 3.0 50 0 – 42 

HRW ARW RAP GFS -6h WSM6 YSU 3.2 50 0 – 48 

HRW ARW -12h RAP GFS -6h WSM6 YSU 3.2 50 0 – 36 

HRW FV3 GFS GFS -6h GFDL EDMF 3 50 0 – 60 

HRW FV3 -12h GFS GFS-6h GFDL EDMF 3 50 0 – 48 

HRW NSSL NAM NAM -6h WSM6 MYJ 3.2 40 0 – 48 

HRW NSSL -12h NAM NAM -6h WSM6 MYJ 3.2 40 0 – 36 

NAM CONUS Nest NAM NAM Ferrier-Aligo MYJ 3.0 60 0 – 60 

NAM CONUS Nest -12h NAM NAM Ferrier-Aligo MYJ 3.0 60 0 – 48  

 

c) NSSL cloud-based Warn-on-Forecast Experiments 
  

Cb-WoFS is a rapidly-updating 36-member, 3-km grid-spacing WRF-ARW-based ensemble data 
assimilation and forecast system. The cb-WoFS forecasts are initialized every 30 minutes and used to 
produce very short-range (0-6/0-3 hour at top/bottom of the hour) probabilistic forecasts of individual 
thunderstorms and their associated hazardous weather phenomena such as supercell hail, high winds, 
flash flooding, and supercell thunderstorm rotation.  The 900-km x 900-km daily cb-WoFS domain will 
target the primary region where severe weather is anticipated, using the SPC Day 1 Convective Outlook 
as a guide. Cb-WoFS is capable of running over two different regions.  A second domain will only be 
implemented when there are two distinct regions where severe weather is expected (e.g., the Plains and 
the East Coast), or when there is a very large single area for which two domains are needed to cover the 
entire risk area. 

The cloud-based Warn-on-Forecast System (cb-WoFS; Martin et al. 2025) uses current 
technologies in containerization and cloud computing. The entire WoFS application was built on top of 
multiple Platform-as-a-Service and Infrastucture-as-a-Service technologies on the Azure platform and the 
WRF model itself rebuilt to run in containers optimized for HPC. With the cb-WoFS interface, 
administrators can easily configure the domain and dynamically create an HPC infrastructure for the run, 
and upon completion, tear it down, thereby reducing costs by only paying for used resources. Another 
benefit is that as Azure continues to add new, updated computer core types from chip manufacturers, 
these options are passed down to Azure customers, giving cb-WoFS operators the choice of running on 
the latest technologies. All parts of WoFS have been rebuilt for scalability: the containerized WRF can be 
executed on any node, the post-processing is built on high performance queues and containerized, so 
any number of post-processing jobs can run concurrently.  

The initial conditions for cb-WoFS are provided by the High-Resolution Rapid Refresh Data 
Assimilation System (HRRRDAS) using the nearest-in-time 1-hour HRRRDAS forecast provided by NCEP 
Central Operations. Currently the WoFS can be started four times a day (15, 21, 03, or 09 UTC).  For 
instance, if WoFS is scheduled to begin data assimilation cycling at 1500 UTC, a 1-h forecast from the 
1400 UTC, 36-member, hourly-cycled HRRRDAS analysis provides the ICs for cb-WoFS.  Boundary 
conditions are from the nearest-in-time 48-h deterministic HRRR forecast (e.g., the 12, 18, 00, or 06 UTC 
run) where perturbations from the previous GEFS (e.g., 06, 12, 18, or 00 UTC, respectively) are added to 
that HRRR forecast.  The GEFS perturbations are scaled such that the ensemble spread at the lateral 
boundaries is similar to that provided from 2018-2021 by the experimental HRRR ensemble.  Table 16 
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provides a summary of the model specifications for cb-WoFS, and Figure 1 shows an example of a SPC 
Day 1 convective outlook and corresponding cb-WoFS domain with WSR-88D radars used for data 
assimilation overlaid.  Further details on the cb-WoFS are included below. 

The 36-member cb-WoFS cycles its data assimilation every 15 minutes by GSI-EnKF assimilation 
of MRMS radar reflectivity and radial velocity data, cloud water path retrievals and clear-sky radiances 
from the GOES-19 imager, and Oklahoma Mesonet observations (when available). Conventional (i.e., 
prepbufr) observations are also assimilated at 15 minutes past each hour. All cb-WoFS ensemble 
members use the NSSL 2-moment microphysics parameterization and the RUC land-surface model; 
however, the PBL and radiation physics options are varied amongst the ensemble members to increase 
ensemble spread, given the fact that the EnKF may underrepresent model physics errors. 6-h (3-h) 
forecasts are initialized and launched from the first 18 members from the real-time cb-WoFS analyses on 
each hour (half-hour). The first 6-h forecast will be launched 2 hours after the initialization time (17, 23, 
05, or 11 UTC).  The final forecasts are launched at either 12 or 15 hours after initialization. These 
forecasts will be viewable using the web-based cb-WoFS Forecast Viewer (https://cbwofs.nssl.noaa.gov). 
 

Table 14 cb-WoFS configuration. 

 WoFS 
Model Version WRF-ARW v3.9+ 

Grid Dimensions 300 x 300 x 50 

Grid Spacing 3 km 

EnKF cycling 36-mem. w/ GSI-EnKF every 15 min 

Observations - Prepbufr conventional observations 
- Oklahoma Mesonet (when available) 
- MRMS reflectivity ≥ 15 dBZ; radar ‘zeroes’; radial velocity 
- GOES-16 cloud-water path & clear sky radiances 

Radiation LW/SW Dudhia/RRTM, RRTMG/RRTMG 

Microphysics NSSL 2-moment 

PBL YSU, MYJ, or MYNN 

LSM RUC (Smirnova) 

 

Figure 1 SPC 1630 UTC issued Day 1 convective outlook (left) and corresponding WoFS grid (right). 

 
d) AI NWP Emulators 
 
 In the last three years, fully AI-based models (i.e., AI NWP emulators) have been developed by 
the private sector for global weather prediction. This area of research is advancing rapidly and has the 
potential to be revolutionary for weather prediction since skill measures of the NWP emulators 
commonly exceed those of the ECMWF’s Integrated Forecast System (IFS; ECMWF 2020), the world’s 
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most skillful global NWP system. Furthermore, the NWP emulators can produce forecasts in seconds, 
orders of magnitude faster and with fewer computational resources than traditional NWP systems. The 
algorithms are trained using large, global, multi-year reanalysis datasets like ERA5 (Hersbach et al. 2020). 
Several of these algorithms have been made public, and government agencies are beginning to run and 
train the models themselves. While objective skill measures have been impressive, these NWP emulators 
have had only limited testing for real-time operational forecasting applications.  Thus, during SFE 2025, 
we will evaluate several of the publicly available algorithms that were trained using ERA5 data. The AI-
based NWP emulators are being run experimentally at the Cooperative Institute for Research in the 
Atmosphere (CIRA) by providing both GFS and IFS initial conditions to these AI models. The CIRA forecasts 
can be viewed at: https://aiweather.cira.colostate.edu/. Ensemble forecast data from Google Deep 
Mind’s WeatherNext Gen system is also being provided through a public repository. 
 Additionally, CIWRO/NSSL has developed a convective scale AI NWP Emulator for WoFS, which is 
known as WoFSCast (Flora and Potvin 2025). Information on each AI NWP Emulator that will be evaluated 
during SFE 2025 is contained below.   
 
 i. Pangu-Weather 
 
 Pangu-Weather is a deep learning-based system trained using 43 years of ERA5 data and was 
developed by Huawei Cloud (China) (Bi et al. 2022). The forecasts are produced with 0.25° resolution. At 
time ranges of 1 h to 1 week, Pangu-Weather was found to outperform the IFS in terms of RMSE and 
anomaly correlation coefficient (ACC) for fields like geopotential, specific humidity, wind speed, and 
temperature. Pangu-Weather is applied by designing a 3D Earth Specific Transformer architecture that 
formulates the pressure level information into cubic data, and applying a hierarchical temporal 
aggregation algorithm to alleviate cumulative forecast errors. The code is publicly available at 
https://github.com/198808xc/Pangu-Weather. Two versions of Pangu-Weather configured by CIRA, one 
with GFS initial conditions and the other with IFS, will be evaluated during SFE 2025.  
 
 ii. GraphCast 
 
 GraphCast is a machine-learning algorithm developed by Google that is trained directly from ERA5 
data (Lam et al. 2022). GraphCast predicts hundreds of weather variables over 10 days using 0.25° 
resolution and produces forecasts in under one minute.  Objective verification found that GraphCast 
significantly outperformed the IFS on 90% of 1380 verification targets. The code for GraphCast is available 
publicly at https://github.com/deepmind/graphcast. GraphCast is pre-trained with ERA5 reanalysis data. 
Two versions of GraphCast configured by CIRA, one with GFS initial conditions and the other with IFS, will 
be evaluated during SFE 2025. Another version of GraphCast run by EMC will also be evaluated. The EMC 
version is fine-tuned with NCEP’s GDAS data as inputs and ERA5 data as ground truth to calculate new 
weights in creating global forecasts 
 

iii. Aurora 
 
Aurora is a large-scale foundation model developed by Microsoft for the Earth system trained on 

millions of hours of diverse data, and can be fine-tuned for diverse applications at only modest 
computational costs (Bodnar et al. 2024).  The code for Aurora is available publicly at 

https://aiweather.cira.colostate.edu/
https://github.com/198808xc/Pangu-Weather
https://github.com/deepmind/graphcast


 

 
13 

https://github.com/microsoft/aurora.  Objective verification found that Aurora outperforms the IFS HRES 
for all lead times up to 10 days. Two versions of Aurora configured by CIRA, one with GFS initial conditions 
and the other with IFS, will be evaluated during SFE 2025.  
 

iv. WeatherNext Gen 
 
WeatherNext Gen is a probabilistic weather model developed by Google DeepMind that 

generates global 15-day, 64-member ensemble forecasts at 0.25-degree resolution, which have been 
shown to outperform the ECMWF ensemble (Price et al. 2025). Generation of a single 15-day 
WeatherNext Gen forecast takes about 8 minutes on a cloud TPUv5 device, and an ensemble can be 
generated in parallel. WeatherNext Gen uses a conditional diffusion model, a generative ML method 
capable of modeling the probability distribution of complex data and generating new samples. It is 
trained on 40 years of ERA5 data. The forecasts are provided through a Google DeepMind repository. 
 

v. WoFSCast 
 

WoFSCast is an AI emulator of the NSSL Warn-on-Forecast System (WoFS; Flora and Potvin 2025). 
Refactored from Google’s GraphCast, but for limited area domain modeling, WoFSCast predicts a 
combination of 3D and 2D variables at high spatiotemporal resolution (3-km grid spacing and 10-min 
timesteps). With a single NVIDIA A100, WoFSCast can produce 18-member, 6-h forecasts in under 2 
minutes.  WoFSCast is trained from WoFS forecasts and at inference time uses the WoFS analysis and 10-
min forecast as initial conditions and WoFS forecasts for boundary conditions. Objective verification 
found that WoFSCast performs similarly to WoFS compared to MRMS out to 6 hrs. A public version of the 
code base is available at https://github.com/NOAA-National-Severe-Storms-Laboratory/frdd-wofs-cast.  
 
e) Calibrated Forecast Products 
 

i. GEFS-based, ML-derived Hazard Probabilities (credit: A. Hill) 
 
Similar to previous SFEs, the GEFS Machine Learning Probabilities (Hill et al. 2020; hereafter, GEFS 

Reforecast MLP) forecasts severe weather hazards through the application of random forests (RFs). The 
GEFS Reforecast MLP RFs are trained with about 9 years of daily 0000 UTC initializations from the FV3-
based Global Ensemble Forecast System reforecast dataset (FV3-GEFS/R) along with severe weather 
reports. For consistency with SPC outlooks as well as SFE activities, RFs are trained separately for 
individual hazards in the day 1-3 timeframes, such that separate forecasts are issued for each hazard 
type (e.g., Figure 2). Then, for days 4-7, forecasts are issued for any hazard type.   

Predictors from the FV3-GEFS/R correspond to parameters expected to be related to severe 
weather occurrence, including bulk wind shear, convective available potential energy, low-level wind and 
thermodynamics, as well as derived quantities like lifting condensation level; all predictors are listed in 
Table 15. To be consistent across variables and times, all predictors are gridded to a 0.5-degree grid for 
preprocessing. Severe weather reports (i.e., storm data) are similarly gridded over the training period, 
where each point is labeled a 0, 1, or 2 for the occurrence of no severe report, a severe report, and a 
significant severe report. For every gridded event of severe weather across the contiguous United States, 
predictors are selected around the training point with spatiotemporal dimensions to capture any pre-

https://github.com/microsoft/aurora
https://developers.google.com/earth-engine/datasets/catalog/projects_gcp-public-data-weathernext_assets_126478713_1_0
https://doi.org/10.22541/essoar.172574503.30734251/v1
https://github.com/NOAA-National-Severe-Storms-Laboratory/frdd-wofs-cast
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existing dynamical model biases from the FV3-GEFS/R, which allows the RFs to learn predictor biases 
during training. Spatially, predictors are gathered within a latitudinal and longitudinal radius (set to 3 in 
these models) around the training point so each grid point represents a separate predictor. Temporally, 
this procedure is followed at each model output time over the forecast window; the FV3-GEFS/R has 3-
hourly output through day 10. For example, during the day-1 period, predictors are gathered 3-hourly 
from forecast hour 12 through hour 36, totaling nine predictor times. The predictor assembly results in 
approximately 6,500 predictors for each training point in which to build the RFs. 
 

Table 15 Short-hand notation (left) and long description (right) of predictor variables used to train GEFS Reforecast MLP severe 
weather RFs. Derived variables from FV3-GEFS/R output are denoted with an asterisk (*). 

Predictor Acronym Predictor Description 

APCP 3-hourly accumulated precipitation 

CAPE Convective available potential energy 

CIN Convective inhibition 

U10 10 m latitudinal wind speed 

V10 10 m longitudinal wind speed 

T2M 2 m temperature 

Q2M 2 m specific humidity 

MSLP Mean sea level pressure 

PWAT Precipitable water 

UV10 10 m wind speed 

SRH03 0 - 3km storm relative helicity 

SHEAR850* 0 - 850 hPa bulk wind shear 

SHEAR500* 0 - 500 hPa bulk wind shear 

ZLCL* Height of lifting condensation level 

RH2M* 2 m relative humidity 

 

 

Figure 2 Probabilistic day-3 forecasts of (upper left) tornado, (upper right) hail, and (bottom left) wind hazards valid 1200 - 
1200 UTC ending 23 March 2022. Hatched contours represent a 10% probability of significant severe hazards. 
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ii. NSSL GEFS-based, ML-derived Hazard Probabilities (credit: A. Clark) 
  
 NSSL has formulated a similar RF model using archived operational GEFS data that provides 
probabilities of any severe weather at lead times of 1 to 15 days (Clark et al. 2025). The global GEFS fields 
are subset over a 0.5° by 0.5° grid covering the CONUS. In addition to the variables available within the 
GEFS forecasts, the pressure level data are used to derive additional diagnostics and indices commonly 
used for severe weather forecasting like bulk shear and the significant tornado parameter. After domain 
subsetting, the fields are interpolated to a coarser, 81-km grid that tightly encompasses the CONUS. After 
interpolation, only a set of 1,385 masked points covering CONUS land areas are used to train the RF. The 
fields are extracted at 3-hourly intervals from forecast hours 12 to 225 (Days 1-10) and 6-hourly intervals 
from forecast hours 228 to 372 (Days 11-15).  In Table 16, the GEFS fields used for predictors in the new 
RF algorithm (GEFS Operational MLP, hereafter) are listed, with the fields that required additional post-
processing marked with an asterisk.  GEFS Operational MLP was updated for SFE 2025 and now includes 
training from March 2021 through March 2025, which more than doubles the previous number of cases 
it was trained on.   

There are several notable differences between GEFS Operational MLP and GEFS Reforecast MLP. 
First, GEFS Reforecast MLP uses 12 different variables as predictors and no additional diagnostics are 
computed from the pressure level data (aside from bulk vertical wind shear), while GEFS-ops RF uses 18 
predictors and does include severe weather diagnostics computed from pressure level data.  Both 
algorithms use the GEFS output at 3-hourly intervals, but GEFS Reforecast MLP uses 9 times per day: 12, 
15, 18, 21, 00, 03, 06, 09, and 12 UTC, while GEFS Operational MLP uses 8 times: 12, 15, 18, 21, 00, 03, 
06, and 09 UTC.  Second, GEFS Reforecast MLP uses a higher resolution grid of about 55-km (0.5° x 0.5°), 
while GEFS-ops RF uses the 81-km NCEP 211 grid.  Additionally, GEFS Reforecast MLP uses predictors at 
the grid-point being considered, as well as all points within a 7 x 7 point box surrounding the point. GEFS 
Operational MLP only uses predictors at the grid-point being considered.  This means that for each point, 
GEFS Reforecast MLP uses: 49 surrounding points x 12 fields x 9 output times = 5292 predictors, while 
GEFS Operational MLP uses 1 point x 18 fields x 8 output times + 1 latitude coordinate + 1 longitude 
coordinate = 146 predictors for Days 1-10, and 74 predictors for Days 11-15 (since those lead times only 
contain 6-hourly GEFS output resulting in 4 output times per day).  Third, for training, GEFS Operational 
MLP uses the ensemble mean of all 31 GEFS members, while GEFS Reforecast MLP is trained on the 
ensemble median of 5 GEFS reforecast members.  Fourth, GEFS Reforecast MLP performs training over 
4 distinct regions of the CONUS and stitches them together for a CONUS-wide forecast, while GEFS 
Operational MLP trains over the entire CONUS.  Finally, for forecast input, GEFS Reforecast MLP uses the 
median of the first 21 GEFS members, while GEFS Operational MLP uses the mean of all 31 GEFS 
members. Table 17 summarizes the main differences between the algorithms. 
 
Table 16 GEFS-based predictors used in GEFS-ops RF. 

GEFS Operational MLP Predictors 
(1) Bulk Shear (0-1 km AGL)* (8) Sfc-based lifting condensation level (LCL) height (15) u-wind (10-m) 

(2) Bulk Shear (0-3 km AGL)* (9) Significant tornado parameter (STP)* (16) v-wind (10-m) 

(3) Bulk Shear (0-6 km AGL)* (10) Mean-sea-level pressure (17) Wind magnitude (10-m) 

(4) Sfc-based convective available 
potential energy (CAPE) 

(11) Precipitable water (18) Most unstable CAPE* 

(5) Surface-based convective inhibition (12) Specific Humidity (2-m) (19) Latitude  

(6) Storm relative helicity (0-3 km) (13) Temperature (2-m) (20) Longitude 

(7) Lape Rate (700-500 mb)* (14) Precipitation (3-h accumulation)  
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Table 17 Summary of differences between GEFS Operational MLP and GEFS Reforecast MLP. 

  GEFS Operational MLP GEFS Reforecast MLP 

Grid-spacing 81-km (interpolated) 55-km (0.5° x 0.5°) 

Training Ensemble mean of 31 GEFS operational 
members 

Ensemble median of 5 GEFS reforecast members 

Lead time Days 1-15 Days 1-8 

Products Total Severe Total Severe (Days 1-8), Hazard probs & Sig 
Severe (Days 1-3) 

Predictors 18 12 

Forecast input Mean of all 31 GEFS members Median of first 21 GEFS members 

Regional training? No (CONUS land points only) yes; 4 distinct regions over the CONUS 

Neighboring points used for predictors? no yes; 7 x 7 point surrounding box 

Latitude/longitude coordinate used for 
predictors? 

yes no 

  

iii. NSF NCAR ML-derived MPAS-based convective hazard probabilities (R. Sobash) 
 
For the SFE 2025, gridded machine learning-based probabilistic convective hazard guidance is 

being generated using neural networks (NNs) and the medium-range real-time MPAS-based ensemble 
forecasts generated at NSF NCAR. Two modifications were made to the system based on evaluations of 
the C-SHiELD-based ML hazard forecasting system in the 2024 SFE. First, the MPAS system natively 
outputs 24-hour probabilities (valid 12 UTC – 12 UTC) for Days 1–5. Second, the MPAS ensemble mean 
is used for training and inference, rather than individual members. 

More specifically, NNs were trained (Table 18) using the 80 sets of 0000 UTC-initialized MPAS 
ensemble mean forecasts during the 2023 and 2024 SFEs. Features include a set of 23 diagnostics (Table 
19) that were upscaled onto an 80-km grid and an additional set of “neighborhood” features constructed 
by taking the non-static predictors and computing means (for the environmental predictors) and maxima 
(for the explicit predictors) in space over 3x3 and 5x5 arrays of 80-km grid boxes. The hourly upscaled 
MPAS output was further aggregated in time to reduce the feature set by taking the mean or maximum 
of each field within three-hour intervals. 

Each grid box was labeled as a “hit” if a severe weather report occurred within a 24-hr period 
(1200 – 1200 UTC) and 40-km of the grid box center point. The NNs were designed to output six 
independent probabilities: probability of hail, wind, tornado, significant hail, significant wind, or any 
storm report. Slight changes were made to the NN training settings, including the addition of 
regularization, compared to 2024 based on hyperparameter experiments. We trained 10 individual NNs, 
with the final output probabilities computed using an average of the 10 networks, based on the work of 
Sobash and Ahijevych (2024). 
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Table 18 Settings used to construct and train the NNs. Ten NNs with different initial weights were trained separately with their 
output probabilities averaged together.  

Neural network hyperparameter Value 

Number of hidden layers 1 

Number of neurons in hidden layer 16 

Dropout rate 0.1 

Learning rate 0.001 

Number of training epochs 30 

Hidden layer activation function Rectified Linear 
Unit 

Output layer activation function Sigmoid 

Optimizer Adam 

Loss function Binary Cross-
entropy 

Batch size 1024 

Regularization 0.01 

Batch normalization On 

 
Table 19 The 23 base predictors used to train the NNs. The mean of the environmental fields, and the maximum of the explicit 

fields, within each 80-km grid box, was used as input into the NNs. Neighborhood predictors were also constructed by 
taking larger spatial and temporal means and maximums of the environmental and explicit fields as described in the text.  

Base Predictor Type 

Forecast Day, Local Solar Hour, Latitude, Longitude, Day of 
Year 

Static 

SBCAPE, SBCIN, MUCAPE, MLLCL Environment 

2-m Temperature & 2-m Dewpoint Temperature Environment 

0-6 km & 0-1 km AGL bulk shear Environment 

0-1 km AGL & 0-3 km AGL Storm-relative helicity Environment 

Fixed-layer significant tornado parameter Environment 

Product of MUCAPE and 0-6 km AGL bulk shear Environment 

700 hPa – 500 hPa lapse rate Environment 

Hourly-maximum 2–5 km AGL UH (positive & negative) Explicit 

Hourly-maximum 0–1 km & 0–3 km AGL UH Explicit 

Hourly-maximum 1 km AGL relative vorticity Explicit 

Hourly-maximum updraft & downdraft speed below 400 
hPa 

Explicit 

Hourly-maximum column-integrated graupel Explicit 

Hourly-maximum 10-m wind speed Explicit 

Column-maximum reflectivity Explicit 
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iv. NSF NCAR ML-derived GEFS-based convective hazard probabilities (R. Sobash) 
 

In a similar way to the MPAS ML hazard probabilities, we have generated GEFS-based 
probabilities for the 2025 SFE. The GEFS-based system was designed to be nearly identical to the MPAS-
based system, to facilitate inter-comparisons. Three major differences exist. First, the feature set is 
restricted to 19 base predictors (Table 20) that are nearly identical to those used in the operational GEFS 
random forest-based system (e.g., Hill et al. 2023). Second, the training dataset is much larger than the 
MPAS forecast dataset, covering March – June of 2021–2024 (i.e., 16 months of GEFS 0000 UTC 
initializations). Finally, 24-hour probabilities are output for Days 1–8, rather than Days 1–5 with MPAS. 
Similar to Hill et al. (2023), we use the 3-hourly GEFS output fields as predictors into the NNs. Other than 
the number of input features, the NN architecture is identical to the MPAS-based system (Table 18). 

 
Table 20 As in Table 21, but for the 16 base predictors used to train the GEFS-based ML NNs. 

Base Predictor Type 

Forecast Day, Local Solar Hour, Latitude, Longitude, Day of Year Static 

MLCAPE, MLCIN Environment 

2-m Temperature & 2-m Specific Humidity Environment 

Surface–500 hPa and Surface–850 hPa bulk shear Environment 

10-m wind speed and components (zonal and meridional) Environment 

Precipitable water Environment 

3-hourly Accumulated Precipitation Environment 

 

f) SPC Impacts System 
 

SPC maintains an internal analytics system (e.g., Clark et al 2019) for predicting the number of 
tornadoes, their characteristics, and their potential impacts to society, using the SPC’s Day 1 tornado 
forecast (both coverage and conditional intensity forecasts) as the initial input. From this input, the 
system runs a series of Monte Carlo simulations (currently set to n=10000 simulations) that draw from a 
number of historical distributions (tornado frequency per unit area, tornado rating, tornado duration, 
path width) to produce many possible realizations of a tornado day.  

Within a simulation/realization, individual tornadoes are placed in a clustered manner, in which 
an initial seed tornado is placed randomly, weighted by continuous probabilities from the Day 1 tornado 
coverage forecast. The system then utilizes historical data to determine the probability of another 
tornado occurring downstream, which serves as a weight for randomly determining if another tornado 
occurs in the cluster. Once the cluster is terminated (i.e., it was determined that another tornado does 
not occur downstream), the process repeats until all tornadoes in the simulation are placed. For direction 
and distance, these simulated tornadoes are combined with storm motion fields from the HRRR to 
produce quasi-realistic tornado paths for the background environment. 

Each realization is overlaid on 1-km gridded societal data (e.g., population, schools) from the US 
Census, such that the potential impact to society can be quantified. Additionally, a machine-learning 
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workflow (trained on historical tornadoes from 1999 to 2021) is used to predict a number of injuries and 
fatalities associated with each tornado. 

With impacts quantified across each realization, distributions of tornado counts and their 
respective potential impacts can be visualized. Additionally, these impacts are compared to historical 
data to construct recurrence rate information. Thus, this system can be used to convert SPC’s operational 
tornado forecasts into quantifiable impact data that can be communicated to partners in emergency 
management, etc. for improved preparedness. 

 
 

 
Figure 3 An example of tornado counts and impacts estimated from the 31 March 2023 1630 UTC outlook. For the box and 

whiskers plots, the whiskers represent the 5th and 95th percentiles, or the reasonable best case and worst case scenarios, 
respectively. The black box indicates the 25th-75th percentile range, while the vertical white line represents the median 
scenario.  
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Figure 4 Five simulations that produced the 95th percentile (i.e., the reasonable worst case scenario) for fatalities, driven by 

the 31 March 2023 1630Z outlook (lower right plot). In the simulation plots, lines denote simulated tornado paths, while 
numbers annotated near the tornado start point indicate the rating. 

 

3. SFE 2025 Core Interests and Daily Activities 
 
 2025 SFE activities will occur from 9am-4pm CDT on Mondays, 8:30am-4pm CDT Tuesday-
Thursday, and 8:30am-12pm CDT Fridays. Tuesday-Friday there is an option 8-8:30am period for map 
analysis, data loading, and networking. Each day will have a lunch break from 12:30-2pm CDT.  On 
Wednesdays there will be an optional science panel discussion from 1:15-2pm. Tables 21-23 provide a 
daily schedule for Monday, Tuesday-Thursday, and Friday, respectively. Further details are provided in 
subsequent sections. 
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Table 21 Schedule for Monday. 

Time (CDT) 
 

9:00 AM – 9:45 AM  Welcome and Introductions 
Hybrid All (Israel Jirak & Participants) 

9:45 AM – 10:30 AM HWT SFE Scientific Objectives and Goals 
Hybrid All (Israel Jirak & Adam Clark) 

10:30 AM – 10:45 AM Break  
(Fill out IRB Consent Form, Program CACs) 

10:45 AM – 11:00 AM Conditional Intensity Forecasting Overview 
Hybrid All (Israel Jirak) 

11:00 AM – 11:15 AM Weather Briefing 
Hybrid All (Tom Galarneau) 

11:15 AM – 12:30 PM Group Forecasting Activity (Coverage and Conditional Intensity Outlooks)  
In-Person R2O (Day 1); Virtual Innovation (Days 3 & 4); Virtual (Day 2) 

12:30 PM – 2:00 PM Lunch/Break 

2:00 PM – 2:15 PM Update on Today’s Weather 
Hybrid All (SPC Forecaster/Israel Jirak) 

2:15 PM – 3:15 PM Individual Forecasting Activity (Mesoscale Discussions and Training) 
In-Person R2O (Meso-beta MD); Virtual 1 (WoFS); Virtual 2 (WoFS) 

3:15 PM – 4:00 PM Individual Forecasting Activity Continued (Day 1 Updates and MDs) 
In-Person R2O (Day 1 Update); Virtual 1 (WoFS); Virtual 2 (WoFS) 

Table 22 Schedule for Tuesday - Thursday. 

Time (CDT) 
  

8:00 AM – 8:30 AM  (Optional) Map Analysis, Data Loading, and Networking 
In-Person (Optional) 

8:30 AM – 9:00 AM  Overview of Yesterday’s Severe Weather 
Hybrid All (Tom Galarneau) 

9:00 AM – 10:30 AM Model & Outlook Evaluation (Orientation, Surveys, and Discussion) 
Hybrid Groups (Group 1; Group 2; Group 3) 

10:30 AM – 10:45 AM Break 

10:45 AM –  11:00 AM Evaluation Highlights 
Hybrid All (Group 1; Group 2; Group 3) 

11:00 AM – 11:15 AM Weather Briefing 
Hybrid All (Tom Galarneau) 

11:15 AM – 12:30 PM Group Forecasting Activity (Coverage and Conditional Intensity Outlooks)  
In-Person R2O (Day 1); Virtual Innovation (Days 3 & 4); Virtual (Day 2) 

12:30 PM – 2:00 PM Lunch/Break   
(Science Discussion Wednesdays @ 1:15) 

2:00 PM – 2:15 PM Update on Today’s Weather 
Hybrid All (SPC Forecaster/Israel Jirak) 

2:15 PM – 3:15 PM Individual Forecasting Activity (Mesoscale Discussions) 
In-Person R2O (Meso-beta MD); Virtual 1 (WoFS); Virtual 2 (WoFS) 

3:15 PM – 4:00 PM Individual Forecasting Activity (Mesoscale Discussions and Training) 
In-Person R2O (Meso-beta MD); Virtual 1 (WoFS); Virtual 2 (WoFS)  
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Table 23 Schedule for Friday. 

Time (CDT) 
  

8:00 AM – 8:30 AM  (Optional) Map Analysis, Data Loading, and Networking 
In-Person (Optional) 

8:30 AM – 9:00 AM  Overview of Yesterday’s Severe Weather 
Hybrid All (Tom Galarneau) 

9:00 AM – 10:30 AM Model & Outlook Evaluation (Orientation, Surveys, and Discussion) 
Hybrid Groups (Group 1; Group 2; Group 3) 

10:30 AM – 10:45 AM Break 

10:45 AM – 11:00 AM Evaluation Highlights 
Hybrid All (Group 1; Group 2; Group 3) 

11:00 AM – 12:00 PM Weekly Wrap-up and Discussion 
Hybrid All (Israel Jirak) 

 

a. Formal Evaluation Activities 
 

SFE 2025 will feature one period of formal evaluation from 9-11:00am CDT Tuesday-Friday.  The 
evaluations will be done in three hybrid groups (i.e., each group will have in-person and virtual 
participants) and involve comparisons of different ensemble diagnostics, CLUE ensemble subsets, and 
other products and guidance. Participants will be split into Groups 1, 2, & 3, which will each conduct a 
separate set of evaluations.  In each group, for each set of evaluations, a short tutorial will be presented 
and then participants will conduct the evaluations independently while facilitators remain available for 
questions.  Following each set of evaluations, there will be a short discussion period during which 
participants can discuss noteworthy aspects of the evaluations, evaluation philosophy, questions, or any 
other topics related to the evaluations.  The evaluations will end at 10:30am, followed by a 15-minute 
break, and from 10:45-11:00am each evaluation group will have 5 minutes to discuss highlights from 
their group with all participants.  The evaluations are categorized as “CAM (E)nsembles”, “(D)eterministic 
CAMs”, “(A)nalyses”, “(C)alibrated Guidance”, “(O)utlooks”, and “(A)rtificial (I)ntelligence”. The letter in 
parentheses combined with a number is used to label the individual evaluations in each category (e.g., 
E1 refers to the first CAM Ensemble evaluation).  Each evaluation group will conduct a mix of evaluations 
from each category.  On Fridays, there will be a weekly wrap-up discussion, including aggregate objective 
verification statistics. The evaluations in each category are summarized below: 

 
(C)alibrated Guidance 
 
C1. Medium Range 00Z Total Severe  
 
 Three different sets of extended range total severe probabilities for Day 3-7 lead times are 
subjectively rated.  These methods include: (1) GEFS Reforecast MLP, (2) GEFS Operational MLP, and (3) 
GEFS NN. 
 
Primary Science Question(s): What are the strengths and weaknesses of the various calibrated hazard 
guidance, and what are the best approaches and techniques to develop calibrated hazard probabilities? 
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C2. Medium Range CAM Severe ML Guidance 
 
 A machine-learning algorithm using predictors from the extended-range, 3-km grid-spacing 
NCAR-MPAS ensemble is used to derive total severe probabilities for Day 3-5 lead times. These will be 
compared to probabilities derived from UH using neighborhood maximum ensemble probabilities 
(NMEPs), and GEFS NN.  
 
Primary Science Question(s): Does CAM-based, machine-learning guidance provide value relative to ML 
guidance derived from coarser global ensembles like the GEFS, and more simple NMEP-based methods?  
 
C3. Tornado Conditional Intensity 
 
 A random-forecast model, torCI, that uses individual environmental parameters and climatology 
to predict the probability of a significant (EF2+) tornado, given that a tornado occurs. It is trained on only 
tornado environments 2007-2024, no nontornadic environments, so that it predicts conditional intensity 
directly. Features in the current version are 0-1-km SRH, 100-hPa MLCAPE, MLCIN, MLLCL, u and v 
components of 0-6-km bulk shear, u and v components of 300-hPa wind, u and v components of 10-m 
wind, and a gridded, smoothed climatology of conditional intensity in rolling three-month windows. 
Daily outlooks are created using the 09 UTC RAP.  At the end of each week, the torCI conditional intensity 
forecasts will be compared to 09 UTC RAP forecasts of the significant tornado parameter (STP), which 
forms the current foundation for the conditional intensity distributions at SPC. 
 
Primary Science Question(s): Does a ML method provide benefit for conditional intensity forecasting of 
tornadoes over STP?  
 

CAM (E)nsembles  
 
E1 & E2. CLUE: Day 1 REFS vs. HREF 
 
 This evaluation will feature an in-depth examination of severe storm-attribute and environmental 
fields from 0000- and 1200-UTC initialized versions of REFS, SPC REFS, and HREF for Day 1 lead times.  
These comparisons will serve to unearth ways in which the currently operational CAM ensemble (i.e., 
HREF) differs from the candidate to replace it (i.e., REFS), and whether the REFS improves upon or 
degrades forecasts of the HREF for fields relevant to forecasting severe weather. A greater number of 
fields will be available for this comparison relative to other comparisons, allowing for participants to 
examine more facets of the guidance and identify potential contributions to severe convective hazard 
forecast success or failure.  
 
Primary Science Question(s): How do probabilistic forecasts of REFS compare to those of the HREF at Day 
1 lead times (e.g., spread and skill)? Are there systematic shortcomings or advantages of REFS? Does the 
SPC REFS improve upon the proposed full 14-member REFS? 
 
 



 

 
24 

E3. CLUE: Day 2 REFS vs. HREF 
 
 This evaluation is similar to the Day 1 REFS vs. HREF, but for Day 2 lead times and limited to 1200 
UTC initializations. In addition, the 0000 UTC initialized NCAR MPAS ensemble will be included in the Day 
2 comparisons.  
 
Primary Science Question(s): How do probabilistic forecasts of REFS compare to those of the HREF at Day 
2 lead times (e.g., spread and skill)? Are there systematic shortcomings or advantages of REFS? How does 
an MPAS-based single-physics ensemble compare to REFS and HREF in terms of spread and skill? 
 
(D)eterministic CAMs 
 
D1. CLUE: 0000 UTC Day 1 Deterministic Flagships 
 

This activity will focus on rating the primary deterministic CAMs provided by several SFE 
collaborators – NSSL (NSSL-MPAS-RT), EMC (RRFS), NASA (NASA-FV3), and GSL (GSL-MPAS-RRFS) – based 
on their skill and utility for severe weather forecasting at Day 1 lead times. These runs will be compared 
to the operational HRRR, which was developed by GSL.   Particular attention will be given to simulated 
storm structure, convective evolution, and location/coverage of storms. Storm surrogate fields, like 
hourly maximum updraft helicity, will also be examined to gauge their utility for forecasting severe 
storms.    
 
Primary Science Question(s): How do various deterministic CAMs compare to the operational standard 
for convective forecasting (i.e., WRF-ARW-based HRRRv4)? 
 
D2. CLUE: 1200 UTC Day 2 Deterministic Flagships 
 
 Five deterministic, 1200-UTC initialized, CAM configurations are subjectively evaluated for Day 2 
lead times.  These configurations include: (1) RRFS, (2) NSSL-MPAS-RT, (3) NASA-FV3, (4) GSL-MPAS-RRFS, 
and (5) HRRR.  
 
Primary Science Question(s): What strategies for CAM configurations perform the best at Day 2 lead 
times, and what are their forecast characteristics at Day 2 lead times for severe weather forecasting 
applications? 
 
D3. CLUE: 0000 UTC Day 3 Deterministic Flagships 
 
 Five deterministic, 0000-UTC initialized, CAM configurations are subjectively evaluated for Day 3 
lead times.  These configurations include: (1) RRFS, (2) NSSL-MPAS-RT, (3) NASA-FV3, (4) GFDL-FV3, and 
(5) NCAR MPAS01. 
 
Primary Science Question(s): What strategies for CAM configurations perform the best at Day 3 lead 
times, and what are their forecast characteristics at Day 3 lead times for severe weather forecasting 
applications? 
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D4. CLUE: 0000 UTC RRFS vs. Operational CAMs 
 
 The RRFS will be compared to operational CAMs that EMC plans to retire once RRFS is 
implemented, which includes the NAM Nest, HRW ARW, HRW NSSL, and HRW FV3. This activity will 
feature a “deeper dive” into storm attribute and environmental fields and serve to unearth ways in which 
the currently operational CAMs differ from the candidate to replace them – RRFS. Specifically, whether 
the RRFS improves upon or degrades forecast of the operational CAMs for fields relevant to severe 
weather forecasting will be examined. A greater number of fields will be available for this comparison 
relative to other comparisons, allowing for participants to examine more facets of the guidance and 
identify potential contributions to severe convective hazard forecast success or failure.  
 
Primary Science Question(s): How do 0000-UTC initialized forecasts of the RRFS compare to those of the 
operational CAMs? Are there systematic shortcomings or advantages of the RRFS? 
 
D5. CLUE: 1200 UTC RRFS vs. Operational CAMs 
 
 This evaluation is the same as D4, except for 1200 UTC initialized models are examined.  
 
Primary Science Question(s): How do 1200 UTC initialized forecasts of the RRFS compare to those of the 
operational CAMs? Are there systematic shortcomings or advantages of the RRFS? 
 
D6. CLUE: RRFS vs. HRRR DA 
 
 The HRRR and RRFS are examined in the first 12 hours of the forecast period for 2100 and 0000 
UTC initializations to evaluate the impact of their data assimilation. 
 
Primary Science Question(s): How do the data assimilation strategies in HRRR and RRFS impact short-
term convective weather forecasts? 
 
D7. CLUE: 0000 UTC MPAS Resolution Sensitivity 
 
 The 3-km grid-spacing GSL-MPAS-RRFS and 3.5-km grid-spacing GSL-MPAS3.5, which are 
identically configured except for their grid-spacing, will be compared. MPAS is believed to have higher 
effective resolution than WRF because of its unstructured grid and numerics, thus, this resolution 
sensitivity test will examine whether 3.5-km grid-spacing could meet performance requirements while 
saving computational time relative to 3-km runs.  
 
Primary Science Question(s): Does GSL-MPAS3.5 have similar performance characteristics to GSL-MPAS-
RRFS? Could GSL-MPAS3.5 meet performance requirements for RRFSv2 while saving computational time 
relative to 3-km runs? 
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D8. CLUE: 0000 UTC Day 2 Global vs. Regional CAM 
 
 A uniform 3-km grid-spacing global MPAS configuration will be compared to an identical 
configuration that uses a 13-km grid-spacing global mesh with refinement to 3-km grid-spacing over the 
CONUS for the Day 2 period. 
 
Primary Science Question(s): Do any differences show up by Day 2 over the CONUS between these 
configurations? 
 
(A)nalyses 
 
A1. Mesoscale Analysis Background  
 
 Hourly versions of the 3D-RTMA using HRRR as the background (3D-RTMA HRRR) will be 
compared to a 3-km grid-spacing version of the sfcOA that uses HRRR forecasts as the background (sfcOA 
HRRR) and applies a simple 2-pass Barnes objective analysis to incorporate the latest surface 
observations. The goal is to assess the utility of these analysis systems for situational awareness and 
short-term forecasting for convective-weather scenarios. 
 
Primary Science Question(s): What are the optimal methods for producing quality mesoscale analyses 
for convective forecasting applications? 
 
A2. Upscaled Mesoscale Analysis Background 
 
 3D-RTMA HRRR and sfcOA HRRR will be upscaled to a 40-km grid and compared to the 40-km 
grid-spacing sfcOA that uses the RAP as the background.    
 
Primary Science Question(s): What are the optimal methods for producing quality mesoscale analyses 
for convective forecasting applications? Is the 40-km upscaled version sufficient for SPC operations? 
What about WFO operations? 
 
A3. Storm Scale Analysis 
 

WoFS-based “analyses” (actually 15-minute maximum forecasts) of 80-m wind are compared to 
preliminary local storm reports, including gust measurements and estimates.  Additionally, similar WoFS-
based, 15-minute maximum 2-5 km AGL UH and updraft speed are compared to MRMS Mid-Level 
Rotation Tracks (MLRT) and MRMS MESH, respectively.     
  
Primary Science Question(s): Can a high resolution, rapidly updating ensemble DA system serve as a 
verification source for severe winds, mesocyclone tracks, and hail?   
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(A)rtificial (I)ntelligence Evaluations 
 
AI1. Global NWP Emulators: GFS ICs 
 
 GraphCast, Pangu-Weather, and Aurora AI-driven global weather predictions starting with GFS 
initial conditions will be assessed, compared, and subjectively rated alongside the GFS. The target lead 
time will be 7 days (i.e. forecast hours 156-180) and all 5 times (12, 18, 00, 06, and 12Z) that fall within 
the convective day will be considered. Participants will primarily consider the 500-mb height-wind 
patterns, but will use other available fields (e.g., 850 mb heights/winds, 2-m temperatures, etc.) to 
supplement their ratings.  Finally, the Day 7 QPFs in the NWP emulators that have QPF available will also 
be subjectively rated alongside the GFS.  
 
Primary Science Question(s): How do forecasts from NWP Emulators initialized from the GFS compare to 
traditional NWP forecasts? Is there value in the NWP emulators for extended range severe weather 
forecasting applications? Does GraphCast tuned with GDAS improve forecasts initialized with GFS? 
  
AI2. Global NWP Emulators: EC ICs 
 
 This evaluation is the same as the previous one, except for global NWP emulators starting with 
EC initial conditions, including the EC AIFS.  
 
Primary Science Question(s): How do forecasts from NWP Emulators initialized from the EC compare to 
traditional NWP forecasts? Is there value in the NWP emulators for extended range severe weather 
forecasting applications? 
 
AI3. Global NWP Emulators: IC Comp 
 
 GraphCast versions with both GFS and EC initial conditions are compared to GFS and EC 
analyses, respectively, at the target lead time of 7 days.  
 
Primary Science Question(s): How sensitive are the NWP emulators to initial conditions, and do either 
of the ICs result in better performance?  
 
AI4. Global Ensembles NWP Emulators 
 
 WeatherNext GenCast ensemble forecasts are compared to traditional NWP ensembles from 
the GFS and IFS, including ensemble mean and spread fields of 500 mb height and 2-m temperature. 
 
Primary Science Question(s): How does a global ensemble based on AI NWP emulation compare to 
traditional NWP ensembles in terms of the mean pattern and overall spread? 
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AI5. WoFS vs. WoFS-Cast 
 
This evaluation examines the quality of deterministic and probabilistic reflectivity forecasts from 

0000 UTC initializations of WoFS and an AI-NWP system called WoFSCast. WoFSCast uses a machine 
learning algorithm trained on 3 years of WoFS forecasts to generate the same products as WoFS more 
quickly and at a fraction of the computational cost. 
 
Primary Science Question(s): How do forecasts derived from a machine learning algorithm designed to 
emulate WoFS compare to WoFS itself? 
 
(O)utlook Evaluations 
 
O1. Day 1/2/3/4 Outlooks 
 
 The experimental Day 1-3 outlooks for tornado, wind, and hail, and Day 4 outlook for total severe 
produced by SFE teams are subjectively rated and compared. 
 
O2. Day 1 Outlook Update (w/ WoFS) 
 
 The Day 1 outlooks for tornado, wind, and hail are compared to the Day 1 outlook updates, which 
are use of WoFS by an operational forecaster and a consensus of non-forecaster participants.   
 
Primary Science Question(s): How does the skill for tornado, hail, and wind severe outlooks vary with 
increasing lead time?  How skillful are the Day 4 total severe outlooks and was CAM guidance useful at 
this lead time? 
 
O3.  SPC Impacts System: Day 1 Outlook Tornado Counts and Impacts 
 
 The SPC Impacts System is run on the Day 1 tornado outlooks with conditional intensity 
information to estimate the number of tornadoes by EF scale and the potential societal impacts. 
 
Primary Science Question(s): Would this information be helpful in communicating the potential severe 
weather impacts on a given day?  What is the best way to visualize this information? 
 

b. Forecast Products and Activities 
 
 There will be two periods of experimental forecast activities during SFE 2025.  The first will occur 
from 11:00am – 12:30pm CDT and will focus on generating probabilistic outlooks for individual hazards, 
as well as more precise information on the intensity of specific hazards.  Participants will be split into 
three groups: (1) In-Person R2O, (2) In-Person Innovation, and (3) Virtual.  As the naming convention 
suggests, in-person participants will be split into the R2O and Innovation groups, while remote 
participants will be in the Virtual group.  The In-Person R2O group will issue products for Day 1, the 
Virtual group will issue products for Day 2, and the In-Person Innovation group will issue products for 
Days 3 & 4. The experimental forecasts will cover a limited-area domain typically covering the primary 
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severe threat area with a center-point based on existing SPC outlooks and/or where interesting 
convective forecast challenges are expected.  The Day 3 & 4 forecast is the only exception to the smaller 
domain, and will instead cover a full CONUS domain.  Also, the Day 4 outlooks will only cover total severe 
(i.e., no individual hazards or conditional intensity forecasts).  

In all groups, the morning forecasts will be done collectively.  The individual hazard forecasts will 
mimic the SPC operational Day 1 & 2 Convective Outlooks by producing individual probabilistic coverage 
forecasts of large hail, damaging wind, and tornadoes within 25 miles (40 km) of a point.  The Day 1 
outlooks will cover the period 1800 UTC to 1200 UTC the next day, while the Days 2, 3, & 4 outlooks will 
cover 1200 – 1200 UTC periods.  Additionally, for experimental outlooks covering Days 1, 2, & 3, 
conditional intensity forecasts of tornado, wind, and hail will be issued, in which areas are delineated 
with reports that are expected to follow intensity distributions defined by conditional intensity groups 
(see more information below).  These conditional intensity forecasts are similar to those issued during 
SFEs 2019-2024.  When generating Day 1 Convective Outlooks, SPC forecasters currently draw 
probabilities that represent the chance of each hazard occurring within 25 miles of a point. Forecasters 
can also delineate “hatched” areas, which represent regions with a 10% chance or greater of significant 
severe weather (EF-2 or greater tornadoes, winds ≥ 65 kts, or hail ≥ 2-in.) within 25 miles of a point. 
Research by the SPC has shown that current coverage forecasts include intensity information that is not 
explicitly communicated to users, so coverage forecasts and intensity forecasts could be better 
labeled/communicated. These results have been used to identify four conditional intensity groups (CIG) 
that can be forecast via examination of the atmospheric environment: no CIG, CIG 0, CIG 1, CIG 2, and 
CIG 3. In plain language, CIG 0 refers to a typical severe weather day, where significant severe weather 
is unlikely, CIG 1 areas indicate where significant severe weather is possible, CIG 2 areas indicate where 
high impact significant severe weather is expected, and CIG 3 represents intensity on historic severe 
weather days.  All groups will have access to all available operational and experimental guidance 
products for issuing their outlooks. 

The second period of experimental forecasting activities will occur during the 2-4pm CDT time 
period.  From 2-2:15pm CDT, a weather briefing led by SPC will be conducted for all participants during 
which an update on current weather will be given. During the 2:15-3:15pm CDT time period, all In-Person 
participants will create their own Mesoscale Discussion (MD) Product using WoFS and other available 
observations and CAM guidance within the SFE Drawing Tool.  Then, during the 3:15-4pm CDT time 
period, each In-Person participant will use WoFS and other available guidance to update the Day 1 
individual hazard coverage and conditional intensity forecasts for the period 2100 – 1200 UTC. 

During the 2:15-4pm CDT time period virtual participants will split into two groups for an activity 
using the newly designed, experimental WoFS viewer. Both groups will complete the same activity but 
will do so separately to keep the group size manageable. During the first day each week, all virtual 
participants will complete a short training on WoFS and the new WoFS Viewer from 2:15-3pm CDT. Then, 
from 3-3:45pm CDT, participants will create their own MD using the new WoFS Viewer and drawing tools 
in Google Slides. From 3:45-4:00pm CDT, virtual participants will complete a short survey on their 
experiences with the new WoFS Viewer. After the first day, the virtual participants will create their own 
MD from 2:15-3pm CDT, share their MDs with their group in a weather discussion from 3-3:15pm CDT, 
create a second MD from 3:15-3:45pm CDT, and then complete a survey on the new WoFS Viewer from 
3:45-4:00pm CDT. 

These WoF activities are the ninth year WoFS has been tested in the SFE to explore the potential 
utility of WoF products for issuing guidance between the watch and warning time scales (i.e. 0.5 to 6-h 



 

 
30 

lead times). These activities explore ways of seamlessly merging probabilistic severe weather outlooks 
with probabilistic severe weather warnings as part of NOAA’s Warn-on-Forecast (WoF; Stensrud et al. 
2009) and Forecasting a Continuum of Environmental Threats (FACETs; Rothfusz et al. 2018) initiatives. 
These efforts also support the transition to higher temporal resolution forecasts at the SPC. 
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 Appendix A: Organizational structure of the NOAA/Hazardous Weather Testbed 

 
NOAA’s Hazardous Weather Testbed (HWT) is a facility jointly managed by the National Severe 

Storms Laboratory (NSSL), the Storm Prediction Center (SPC), and the NWS Oklahoma City/Norman 
Weather Forecast Office (OUN) within the National Weather Center building on the University of 
Oklahoma South Research Campus.  The HWT is designed to accelerate the transition of promising new 
meteorological insights and technologies into advances in forecasting and warning for hazardous 
mesoscale weather events throughout the United States.  The HWT facilities are situated between the 
operations rooms of the SPC and OUN.  The proximity to operational facilities, and access to data and 
workstations replicating those used operationally within the SPC, creates a unique environment 
supporting collaboration between researchers and operational forecasters on topics of mutual interest. 

The HWT organizational structure is composed of three overlapping programs (Fig. B1).  The 
Experimental Forecast Program (EFP) is focused on predicting hazardous mesoscale weather events on 
time scales ranging from hours to a week in advance, and on spatial domains ranging from several 
counties to the CONUS. The EFP embodies the collaborative experiments and activities previously 
undertaken by the annual SPC/NSSL Spring Experiments.  For more information see 
https://hwt.nssl.noaa.gov/efp/.  

The Experimental Warning Program (EWP) is concerned with detecting and predicting mesoscale 
and smaller weather hazards on time scales of minutes to a few hours, and on spatial domains from 
several counties to fractions of counties.  The EWP embodies the collaborative warning-scale 
experiments and technology activities previously undertaken by the OUN and NSSL.  For more 
information about the EWP see https://hwt.nssl.noaa.gov/ewp/.  A key NWS strategic goal is to extend 
warning lead times through the “Warn-on-Forecast” concept (Stensrud et al. 2009), which involves using 

Figure A1:  The umbrella of the NOAA Hazardous Weather Testbed (HWT) encompasses two 
program areas:  The Experimental Forecast Program (EFP), the Experimental Warning Program 
(EWP), and the GOES-R Proving Ground (GOES-R). 

 

https://hwt.nssl.noaa.gov/efp/
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frequently updated short-range forecasts (≤ 1h lead time) from convection-resolving ensembles.  This 
provides a natural overlap between the EFP and EWP activities. 

The GOES-R Proving Ground (established in 2009) exists to provide demonstration of new and 
innovative products as well as the capabilities available on the next generation GOES-16 satellite.  The 
PG interacts closely with both product developers and NWS forecasters. More information about GOES-
R Proving Ground is found at http://cimss.ssec.wisc.edu/goes_r/proving-ground.html. 

Rapid science and technology infusion for the advancement of operational forecasting requires 
direct, focused interactions between research scientists, numerical model developers, information 
technology and communication specialists, and operational forecasters.  The HWT provides a unique 
setting to facilitate such interactions and allows participants to better understand the scientific, 
technical, and operational challenges associated with the prediction and detection of hazardous weather 
events.  The HWT allows participating organizations to: 

 

• Refine and optimize emerging operational forecast and warning tools for rapid integration into 
operations  

• Educate forecasters on the scientifically correct use of newly emerging tools and to familiarize 
them with the latest research related to forecasting and warning operations  

• Educate research scientists on the operational needs and constraints that must be met by any 
new tools (e.g., robustness, timeliness, accuracy, and universality)  

• Motivate other collaborative and individual research projects that are directly relevant to 
forecast and warning improvement 
 

For more information about the HWT, see https://hwt.nssl.noaa.gov/.  Detailed historical 
background about the EFP Spring Experiments, including scientific and operational motivation for the 
intensive examination of high resolution NWP model applications for convective weather forecasting, 
and the unique collaborative interactions that occur within the HWT between the research and 
operational communities, are found in Kain et al. (2003), Weiss et al. (2010 – see 
http://www.spc.noaa.gov/publications/weiss/hwt-2010.pdf), Clark et al. (2012; 2018; 2020; 2021; 2022; 
2023), and Gallo et al. (2017). 
  

http://cimss.ssec.wisc.edu/goes_r/proving-ground.html
http://www.spc.noaa.gov/publications/weiss/hwt-2010.pdf
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Appendix B: Mandatory 2025 CLUE Fields 

1. Mean Sea Level Pressure 26. CIN (most unstable) 

2. Composite reflectivity 27. CAPE (mixed layer) 

3. Reflectivity at -10 C 28. CIN (mixed layer) 

4. Maximum surface wind gust 29. 0-3 km AGL storm relative helicity 

5. hrly-max upward motion 100-1000 hPa 30. 0-1 km AGL storm relative helicity 

6. hrly-max downward motion 100-1000 hPa 31. 2-5 km AGL UH (instantaneous) 

7. Reflectivity at 1-km AGL 32. Echo Top Height 

8. Hrly-max reflectivity at 1-km 33. 300 hPa Height 

9. Hrly-max reflectivity at -10 C 34. 300 hPa u-wind 

10. Hrly-max 2-5 km AGL UH 35. 300 hPa v-wind 

11. Hrly-min 2-5 km AGL UH 36. 300 hPa temperature 

12. Hrly-max 0-3 km AGL UH 37. 500 hPa Height 

13. Hrly-min 0-3 km AGL UH 38. 500 hPa u-wind 

14. Surface Pressure 39. 500 hPa v-wind 

15. Surface Height 40. 500 hPa temperature 

16. 2-m temperature 41. 700 hPa Height 

17. 2-m dewpoint 42. 700 hPa u-wind 

18. 2-m relative humidity 43. 700 hPa v-wind 

19. 10-m u-wind 44. 700 hPa temperature 

20. 10-m v-wind 45. 850 hPa Height 

21. Hrly-max 10-m Wind Speed 46. 850 hPa u-wind 

22. Surface total precipitation (run total) 47. 850 hPa v-wind 

23. CAPE (surface parcel) 48. 850 hPa temperature 

24. CIN (surface parcel) 49. 850 hPa specific humidity 

25. CAPE (most unstable)  
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