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1. Introduction 
 

Each spring, the Experimental Forecast Program (EFP) of the NOAA/Hazardous Weather Testbed 
(HWT), organized by the Storm Prediction Center (SPC) and National Severe Storms Laboratory (NSSL), 
conducts a collaborative experiment to test emerging concepts and technologies designed to improve 
the prediction of hazardous convective weather.  The primary goals of the HWT are to accelerate the 
transfer of promising new tools from research to operations, to inspire new initiatives for operationally 
relevant research, and to identify and document sensitivities and the performance of state-of-the art 
experimental convection-allowing (1- to 3-km grid-spacing) modeling systems.   

The 2023 HWT Spring Forecasting Experiment (SFE 2023), a cornerstone of the EFP, will be 
conducted 1 May – 2 June.  After three years of virtual experiments, this will be the first experiment 
with in-person participation since 2019.  Additionally, we’ll continue to have virtual participation in the 
2023 SFE, making 2023 the first hybrid experiment. Relative to the last two virtual experiments, this 
year’s hybrid experiment will have a similar format with all participants participating in morning and 
afternoon forecasting activities, as well as next-day model evaluation activities.  As in previous years, a 
suite of new and improved experimental CAM guidance contributed by our large group of collaborators 
will be central to these forecasting and model evaluation activities. These contributions comprise an 
ensemble framework called the Community Leveraged Unified Ensemble (CLUE; Clark et al. 2018).  The 
2023 CLUE is constructed by using common model specifications (e.g., grid-spacing, model version, 
domain size, post-processing, etc.) wherever possible so that the simulations contributed by each group 
can be used in carefully designed controlled experiments.  This design will once again allow us to conduct 
several experiments geared toward identifying optimal configuration strategies for deterministic CAMs 
and CAM ensembles.  The 2023 CLUE includes 40 members with 3-km grid-spacing, as well as a single 
member using 1-km grid-spacing.  The SFE 2023 will also involve the continued testing of the Warn-on-
Forecast System (WoFS, hereafter), which produces 18-member, 3-km grid-spacing forecasts, and will 
be used for the 7th year to issue very short lead-time outlooks.   

With tentative plans for operational implementation of the Rapid Refresh Forecast System 
(RRFS) in late 2024, SFE 2023 will make it a point of emphasis to evaluate the RRFS against the 
operational High-Resolution Rapid Refresh (HRRR) and High-Resolution Ensemble Forecast (HREF) 
systems for severe weather forecasting applications.  New testing and evaluation activities for SFE 2023 
will include examinations of regional and global-with-nest versions of the Model for Prediction Across 
Scales and extended range (Days 3-8) CAM ensemble evaluations.  

This document summarizes the core interests of SFE 2023 with information on experiment 
operations.  The organizational structure of the HWT and information on various forecast tools and 
diagnostics can also be found in this document.  The remainder of the operations plan is organized as 
follows: Section 2 provides details on model and products being tested during SFE 2023 and Section 3 
describes the core interests and new concepts being introduced for SFE 2023.  A list of daily participants, 
details on the SFE forecasting, and more general information on NOAA's HWT are found in appendices. 
 
2.  Overview of Experimental Products and Models  
 

Daily model evaluation activities will occur Tuesday through Friday from 9:00 – 11:00am (CDT) 
focusing on various CLUE subsets and calibrated guidance.  The 2023 CLUE includes deterministic and 
ensemble forecasts using the most recent versions of the Finite Volume Cubed-Sphere Model (FV3), the 
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Advanced Research Weather Research and Forecasting (WRF-ARW) model, and the Model for Prediction 
Across Scales (MPAS). In addition to the CLUE, the operational 3-km grid-spacing High-Resolution 
Ensemble Forecast system version 3 (HREFv3) and High-Resolution Rapid Refresh version 4 (HRRRv4) 
will be examined as the operational modeling baselines.  The rest of this section provides further details 
on each modeling system utilized in SFE 2023. 

   
a) The 2023 Community Leveraged Unified Ensemble (CLUE) 
 
 The CLUE is a carefully designed ensemble with members contributed by NOAA units: NSSL, 
Environmental Modeling Center (EMC), Global Systems Laboratory (GSL), and Geophysical Fluid 
Dynamics Laboratory (GFDL); and research groups at the National Aeronautics and Space Administration 
(NASA) and the National Center for Atmospheric Research (NCAR). All CLUE members cover a CONUS 
domain with 3-km grid-spacing, except the NASA FV is run at 2-km grid-spacing and the NSSL1 is run at 
1-km grid-spacing over the eastern 2/3 of the CONUS.  Depending on the CLUE subset, forecast lengths 
range from 18 to 192 h.  Table 1 summarizes all 2023 CLUE contributions.  Subsequent tables provide 
details on members in each subset. 
 
Table 1 Summary of the 8 unique subsets that comprise the 2023 CLUE. For the RRFS and RRFSphys CLUE Subsets, 00, 06, 12, 

& 18 UTC initializations have 60 h forecast lengths and the entire 10-member ensemble is run; for all other RRFS and 
RRFSphys initialization times, only the control member is initialized with forecast lengths of 18-h. 

Clue Subset # of 
mems 

IC/LBC 
perts 

Mixed 
Physics 

Data 
Assimilation 

Dynamical 
Core 

Agency Init. Times 
(UTC) 

Forecast 
Length (h) 

Domain 

RRFS 10 EnKF no Hybrid 3DEnVar FV3 EMC/GSL 00-23 60/18 CONUS 
RRFSphys 9 EnKF yes Hybrid 3DEnVar FV3 EMC/GSL 00-23 60/18 CONUS 

NSSL1 1 none no HRRR ICs ARW NSSL 00 36 2/3 CONUS 
NSSL-MPAS 3 none no HRRR or RRFS ICs MPAS NSSL 00 48 CONUS 

GFDL-FV3 1 none no GFS cold start FV3 GFDL 00 126 CONUS 

NASA-FV3 1 none no GEOS-DA FV3 NASA 00 120 CONUS 

NCAR-FV3 10 GEFS no GEFS cold start FV3 NCAR 00 192 CONUS 
NCAR-MPAS 5 GEFS no GEFS cold start MPAS NCAR 00 132 CONUS 
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Table 2 Specifications for the RRFS ensemble. The RRFS is a rapidly-updated, convection-allowing (3 km) ensemble forecast 
system. Ensembles are initialized using 3-km ensemble perturbations drawn directly from the RRFS Data Assimilation 
System’s (RDAS) ensemble Kalman filter analysis members. The control member forecast is initialized from the hybrid 
3DEnVar analysis. The RDAS uses a wide variety of conventional observations along with radar reflectivity. It also includes 
a nonvariational cloud analysis. For gravity wave drag, the small scale and turbulence orographic form drag options are 
used in all members.  Stochastically perturbed parameterization tendencies (SPPT) are applied to all perturbed members 
(i.e., RRFS01-09), and stochastic parameter perturbations (SPP) are applied to the microphysics, PBL, surface layer, 
radiation, and gravity wave drag parameterizations in the perturbed members. The RRFS will be under active 
development throughout the HWT SFE period and it may undergo changes to its underlying scientific package that impact 
results. This is distinct from prior years when every effort was made to minimize changes to the real-time test system 
during the SFE. The extent of changes and expected impact will be communicated to the HWT/SFE facilitators if and when 
changes are made that will significantly impact results. 

Members:  
RRFS 

ICs LBCs Micro-
physics 

PBL/SFC LSM Radiation Shallow 
Cumulus 

Dynamical 
Core 

RRFS (ctl) RRFS hybrid 3DEnVar GFS Thompson MYNN/MYNN RUC RRTMG n/a FV3 
RRFS01 enkf1 GEFS m1 Thompson MYNN/MYNN RUC RRTMG n/a FV3 
RRFS02 enkf2 GEFS m2 Thompson MYNN/MYNN RUC RRTMG n/a FV3 
RRFS03 enkf3 GEFS m3 Thompson MYNN/MYNN RUC RRTMG n/a FV3 
RRFS04 enkf4 GEFS m4 Thompson MYNN/MYNN RUC RRTMG n/a FV3 
RRFS05 enkf5 GEFS m5 Thompson MYNN/MYNN RUC RRTMG n/a FV3 
RRFS06 enkf6 GEFS m6 Thompson MYNN/MYNN RUC RRTMG n/a FV3 
RRFS07 enkf7 GEFS m7 Thompson MYNN/MYNN RUC RRTMG n/a FV3 
RRFS08 enkf8 GEFS m8 Thompson MYNN/MYNN RUC RRTMG n/a FV3 
RRFS09 enkf9 GEFS m9 Thompson MYNN/MYNN RUC RRTMG n/a FV3 

 

Table 3 Specifications for the RRFSphys ensemble. Note, RRFS and RRFSphys share the same control member. SPPTs are 
applied to all perturbed members.  SPP is applied to Thompson in members RRFSphys02-05; MYNN PBL & surface layer 
physics in members RRFSphys04, 06, and 09; and LSM, radiation, and gravity wave drag parameterizations in all 
perturbed members.  For the NSSL microphysics (Mansell 2010) members, SPP is applied using a parameter perturbation 
following a Latin hypercube sampling with multidimensional uniformity technique.   

Members:  
RRFSphys 

ICs LBCs Micro-
physics 

PBL/SFC LSM Radiation Shallow 
Cumulus 

Dynamical 
Core 

RRFS (ctl) RRFS hybrid 3DEnVar GFS Thompson MYNN/MYNN RUC RRTMG n/a FV3 
RRFSphys01 enkf1 GEFS m1 Thompson H-EDMF/GFS RUC RRTMG saSAS Shal FV3 
RRFSphys02 enkf2 GEFS m2 Thompson TKE-EDMF/GFS RUC RRTMG saSAS Shal FV3 
RRFSphys03 enkf3 GEFS m3 Thompson MYNN/MYNN RUC RRTMG saSAS Shal FV3 
RRFSphys04 enkf4 GEFS m4 Thompson TKE-EDMF/GFS RUC RRTMG saSAS Shal FV3 
RRFSphys05 enkf5 GEFS m5 NSSL MYNN/MYNN RUC RRTMG saSAS Shal FV3 
RRFSphys06 enkf6 GEFS m6 NSSL H-EDMF/GFS RUC RRTMG saSAS Shal FV3 
RRFSphys07 enkf7 GEFS m7 NSSL TKE-EDMF/GFS RUC RRTMG saSAS Shal FV3 
RRFSphys08 enkf8 GEFS m8 NSSL MYNN/MYNN RUC RRTMG saSAS Shal FV3 
RRFSphys09 enkf9 GEFS m9 NSSL TKE-EDMF/GFS RUC RRTMG saSAS Shal FV3 
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Table 4 Specifications for the NSSL1 CLUE member. This member uses 1-km grid-spacing covering the eastern 2/3 of the 
CONUS and is driven by the HRRR.  For computational efficiency, the 1-km nest does not start integration until 6 h into 
the 00Z-initialized HRRR forecast (i.e., 0600 UTC), and forecasts to 36 h (i.e., 1200 UTC the next day) are provided. 

Member:  
NSSL1 

ICs LBCs Microphysics PBL LSM Radiation Dynamical Core 

NSSL1 HRRR HRRR NSSL MYNN RUC RRTMG ARW 
 

Table 5 Specifications for the NSSL-MPAS CLUE members.  These members use 3-km grid-spacing covering the CONUS and 
are driven by the HRRR or RRFS.  The last two letters of each member denote the ICs and microphysics (“HN” = HRRR-
NSSL, “HT” = HRRR-Thompson, and “RT” = RRFS-Thompson).    

Member:  
NSSL-MPAS 

ICs LBCs Microphysics PBL LSM Radiation Dynamical Core 

NSSL-MPAS-HN HRRR HRRR NSSL MYNN RUC RRTMG MPAS 
NSSL-MPAS-HT HRRR HRRR Thompson MYNN RUC RRTMG MPAS 
NSSL-MPAS-RT RRFS RRFS Thompson MYNN RUC RRTMG MPAS 

 

Table 6 Specifications for the GFDL FV3 CLUE member. GFDL’s C-SHiELD (Harris et al., 2019) is an FV3-based model that uses 
a 13-km global grid and a 3-km CONUS nest, coupled to a modified form of the GFS Physics. C-SHiELD uses version 3 of 
the GFDL In-line Microphysics (Zhou et al. 2022) and the EMC/UW TKE-EDMF PBL scheme (Han and Bretherton 2019). 
On the CONUS nest the Noah-MP LSM is used; the global domain uses the GFS Noah LSM. Initialization is cold start from 
regridded GFS real-time analyses. GFDL will provide simulations run daily at 00Z out to 126 hours to demonstrate the 
potential for medium-range prediction of convective-scale events. 

Member: 
GFDL FV3 

ICs LBCs Microphysics PBL LSM Radiation Dynamical Core 

GFDL-FV3 GFS n/a GFDL TKE-EDMF NOAH-MP RRTMG FV3 
 

Table 7 Specifications for the NASA-FV3 CLUE member. The NASA-FV3 is also known as the NASA GEOS model and will run an 
FV3-based stretched global grid.  The target resolution is a c2160 grid with 137 vertical levels, the stretching will produce 
a 2-km domain over CONUS with the coarsest global resolution of 12-km over the Indian Ocean. We will be running this 
case in a replay mode using an incremental analysis update (IAU) to our GEOS-FP 12-km production data assimilation 
system. The IAU approach permits our higher resolution model to evolve dynamically with time and avoids having to cold 
start forecasts each day.  The NASA FV3 model will produce 5-day forecasts at 00Z daily to provide medium range 
prediction of convective events over CONUS. 

Member: 
NASA-FV3 

ICs LBCs Micro-
physics 

PBL LSM Radiation Dynamical 
Core 

NASA-FV3 GEOS-FP None GEOS-GFDL Lock-Louis & UW Nasa Catchment RRTMG FV3 
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Table 8 Specifications for the NCAR-FV3 ensemble members. These 10-member ensemble forecasts are based on GFDL’s C-
SHiELD (Harris et al., 2020), an FV3-based model that uses a 13-km global grid and a 3-km CONUS nest, coupled to a 
modified form of the GFS Physics. C-SHiELD uses the GFDL Inline Microphysics (Zhou et al. 2019; Harris et al. 2020) and 
the EMC/UW TKE-EDMF PBL scheme (Han and Bretherton 2019). On the CONUS nest the Noah-MP LSM is used while the 
global domain uses the GFS Noah LSM. The Scale-aware Simplified (SAS) Arakawa-Schubert cumulus parameterization is 
also used; both shallow and deep schemes are employed on the 13-km global grid but only a shallow scheme is employed 
on the 3-km nest. All members use identical physics, with ensemble diversity solely provided by initial conditions. No 
stochastic physics are used. Initialization is cold-start from members 1–10 of real-time GEFS initial conditions. Simulations 
run daily at 00Z out to 192 hours to demonstrate the potential for medium-range prediction of convective-scale events.  

Members:  
NCAR-FV3 

ICs LBCs Micro-
physics 

PBL LSM Radiation Cumulus Dynamical 
Core 

NCAR-FV3-01 GEFS m1 n/a GFDLv2 TKE-EDMF NOAH-MP RRTMG SAS Arakawa-Schubert FV3 
NCAR-FV3-02 GEFS m2 n/a GFDLv2 TKE-EDMF NOAH-MP RRTMG SAS Arakawa-Schubert FV3 
NCAR-FV3-03 GEFS m3 n/a GFDLv2 TKE-EDMF NOAH-MP RRTMG SAS Arakawa-Schubert FV3 
NCAR-FV3-04 GEFS m4 n/a GFDLv2 TKE-EDMF NOAH-MP RRTMG SAS Arakawa-Schubert FV3 
NCAR-FV3-05 GEFS m5 n/a GFDLv2 TKE-EDMF NOAH-MP RRTMG SAS Arakawa-Schubert FV3 
NCAR-FV3-06 GEFS m6 n/a GFDLv2 TKE-EDMF NOAH-MP RRTMG SAS Arakawa-Schubert FV3 
NCAR-FV3-07 GEFS m7 n/a GFDLv2 TKE-EDMF NOAH-MP RRTMG SAS Arakawa-Schubert FV3 
NCAR-FV3-08 GEFS m8 n/a GFDLv2 TKE-EDMF NOAH-MP RRTMG SAS Arakawa-Schubert FV3 
NCAR-FV3-09 GEFS m9 n/a GFDLv2 TKE-EDMF NOAH-MP RRTMG SAS Arakawa-Schubert FV3 
NCAR-FV3-10 GEFS m10 n/a GFDLv2 TKE-EDMF NOAH-MP RRTMG SAS Arakawa-Schubert FV3 

 
Table 9 Specifications for the NCAR-MPAS ensemble members. All 5 ensemble members use NCAR’s MPAS model and identical 

physics, with ensemble diversity solely provided by initial conditions. No stochastic physics are used. Initialization is cold-
start from members 1–5 of real-time GEFS initial conditions. Simulations run daily at 00Z out to 132 hours to demonstrate 
the potential for medium-range prediction of convective-scale events. 

Members:  
NCAR-MPAS 

ICs LBCs Micro-
physics 

PBL LSM Radiation Cumulus Dynamical 
Core 

NCAR-MPAS01 GEFS m1 n/a Thompson MYNN NOAH RRTMG Scale-aware New Tiedtke MPAS 
NCAR-MPAS02 GEFS m2 n/a Thompson MYNN NOAH RRTMG Scale-aware New Tiedtke MPAS 
NCAR-MPAS03 GEFS m3 n/a Thompson MYNN NOAH RRTMG Scale-aware New Tiedtke MPAS 
NCAR-MPAS04 GEFS m4 n/a Thompson MYNN NOAH RRTMG Scale-aware New Tiedtke MPAS 
NCAR-MPAS05 GEFS m5 n/a Thompson MYNN NOAH RRTMG Scale-aware New Tiedtke MPAS 

 
 

The configuration of the 2023 CLUE will allow for several unique experiments that have been 
designed to examine issues immediately relevant to the design of a NCEP/EMC operational CAM-based 
ensemble.  Some of the major themes are listed below: 
 
RRFS vs. HRRR/HREF: With plans for operational implementation of the RRFS in late 2024, a critical 
evaluation activity for SFE 2023 will involve comparing the deterministic and ensemble components of 
RRFS to their operational counterparts HRRR and HREF, respectively.  Comparisons will be made for Day 
1 & 2 lead times.  Additional comparisons will be made during the first 12 h of the forecasts to evaluate 
the effectiveness of the data assimilation systems in each system.  
 
RRFS Configuration Strategies: With the possibility that computational limitations may only allow 6 
members at a single initialization time when RRFS is implemented operationally, 6-hour and 12-hour 
time-lagging will be tested as a cost-effective strategy to increase membership in the RRFS (Table 2).  
Furthermore, RRFS with mixed-physics (Table 3) will be examined to assess and compare performance 
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characteristics compared to the single physics RRFS (Table 2) to help determine the optimal operational 
configuration.  In the 6- and 12-h time lagged configurations, members RRFS (ctl), RRFS01, RRFS02, 
RRFS03, RRFS04, and RRFS05 will be used for the single physics ensemble, and members RRFS (ctl), 
RRFSphys01, RRFSphys02, RRFSphys05, RRFSphys06, and RRFSphys07 will be used for the mixed-physics 
ensemble. 
 
Medium-Range CAM Ensembles: NCAR will be providing a 10-member, FV3-based, 3-km grid-spacing 
ensemble with forecasts to 7 days (Table 8).  Additionally, a 5-member, 3-km grid-spacing MPAS 
ensemble will have forecasts to 5 days (Table 9).  Days 3-7 will be evaluated in the NCAR-FV3 ensemble 
for the same valid time to assess the evolution of forecast quality with increasing lead time.  For lead 
times of 3-5 days, a 5-member subset of NCAR-FV3 will be compared to the 5-member NCAR-MPAS 
ensemble to assess differences in forecast quality between the two ensembles at each lead time.  
 
Enhanced resolution: NSSL will be running a version of WRF-ARW with 3-km grid-spacing initialized from 
the HRRR (NSSL1; Table 4). The NSSL1 forecasts will be compared to the HRRR to examine grid-spacing 
sensitivity and assess whether enhanced resolution can provide improved severe weather guidance.  
Particular attention will be given to the depiction of storm structure and mode, as well as low-level 
rotation diagnostics (e.g., 0-2 km AGL updraft helicity) for which recent research suggests the 1-km grid-
spacing runs can provide improved tornado guidance.   
 
3D-RTMA Background and Storm-Scale Analyses: Hourly versions of the 3D-RTMA will be compared to 
assess the role that the background first-guess has on the final analysis.  One version uses the HRRR for 
the background while the other uses the RRFS.  Versions of the analyses upscaled to 40-km will also be 
examined and compared with SPC’s surface objective analysis (sfcOA). Finally, 15-minute WoFS forecasts 
of hourly maximum 80-m winds, UH, and updraft speed will be compared to Multi-Radar, Multi-Sensor 
(MRMS) products to gauge whether these 15-minute WoFS forecasts are a viable proxy for observed 
hazards. 
 

To ensure consistent post-processing, visualization, and verification, post-processing is standardized 
as much as possible, so that a consistent set of model output fields are output on the same grid.  For the 
2023 CLUE, all groups output fields to the 3-km CONUS grid used for the operational HRRRv4.  For WRF-
ARW, FV3-LAM, and MPAS the Unified Post-Processor software (UPP; available at 
http://www.dtcenter.org/upp/users/downloads/index.php) is used and a minimum set of 49 output 
fields is provided at hourly intervals.  This list of mandatory CLUE fields is provided in Appendix C and 
includes fields that are relevant to a broad range of forecast needs, including aviation, severe weather, 
and precipitation.   
 
 
b) High Resolution Ensemble Forecast (HREFv3) System 
 
 HREFv3 is a 10-member CAM ensemble that was implemented 11 May 2021.  HREFv3 replaced 
HREFv2.1.  The design of HREFv3 originated from the SSEO, which demonstrated skill for six years in the 
HWT and SPC prior to operational implementation as the HREF in 2017.  In HREFv3, the HRW NMMB 
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simulations have been replaced with HRW FV3 and HRRRv3 has been upgraded to HRRRv4.  HREFv3 
specifications are listed in Table 10.   
 
Table 10 Model specifications for HREFv3.   

HREFv3 ICs LBCs Microphysics PBL dx (km) Vertical Levels HREF hours 

HRRRv4 HRRRDAS RAP -1h Thompson MYNN 3.0 50 0 – 48 
HRRRv4 -6h HRRRDAS RAP -1h Thompson MYNN 3.0 50 0 – 42 
HRW ARW RAP GFS -6h WSM6 YSU 3.2 50 0 – 48 
HRW ARW -12h RAP GFS -6h WSM6 YSU 3.2 50 0 – 36 
HRW FV3 GFS GFS -6h GFDL EDMF 3 50 0 – 60 
HRW FV3 -12h GFS GFS-6h GFDL EDMF 3 50 0 – 48 
HRW NSSL NAM NAM -6h WSM6 MYJ 3.2 40 0 – 48 
HRW NSSL -12h NAM NAM -6h WSM6 MYJ 3.2 40 0 – 36 
NAM CONUS Nest NAM NAM Ferrier-Aligo MYJ 3.0 60 0 – 60 
NAM CONUS Nest -12h NAM NAM Ferrier-Aligo MYJ 3.0 60 0 – 48  

 
 
c) NSSL cloud-based Warn-on-Forecast Experiments 
  

Cloud-based Warn-on-Forecast (cb-WoFS) is the next WoFS iteration, upgraded to use current 
technologies in containerization and cloud computing. The entire WoFS application was rebuilt on top 
of multiple Platform-as-a-Service and Infrastucture-as-a-Service technologies on the Azure platform and 
the WRF model itself rebuilt to run in containers optimized for HPC. With the new cb-WoFS interface, 
administrators can easily configure the domain and dynamically create an HPC infrastructure for the run, 
and upon completion, tear it down, thereby reducing costs by only paying for used resources. Another 
benefit is that as Azure continues to add new, updated computer core types from chip manufacturers, 
these options are passed down to Azure customers, giving cb-WoFS operators the choice of running on 
the latest technologies. All parts of WoFS have been rebuilt for scalability: the containerized WRF can be 
executed on any node, the post-processing is built on high performance queues and containerized, so 
any number of post-processing jobs can run concurrently.   

The cb-WoFS is a rapidly-updating 36-member, 3-km grid-spacing WRF-based ensemble data 
assimilation and forecast system. The cb-WoFS forecasts are initialized every 30 minutes and used to 
produce very short-range (0-6/0-3 h at top/bottom of the hour) probabilistic forecasts of individual 
thunderstorms and their associated hazardous weather phenomena such as supercell hail, high winds, 
flash flooding, and supercell thunderstorm rotation.  The 900-km x 900-km daily cb-WoFS domain will 
target the primary region where severe weather is anticipated. For SFE 2023, WoFS will have the 
capability to run over two different domains.  A second domain will only be implemented when there 
are two separate regions where severe weather is expected (e.g., Midwest and East Coast), or when 
there is a very large single area for which two domains are needed to cover the entire risk area.  

The starting point for each day’s experiment will be the High-Resolution Rapid Refresh Data 
Assimilation System (HRRRDAS) and the 1200 UTC HRRR forecast provided by NCO/GSL. A 1-h forecast 
from the 1400 UTC, 36-member, hourly-cycled HRRRDAS analysis provides the ICs for cb-WoFS.  
Boundary conditions are perturbed HRRR forecasts, where perturbations from the 0600 UTC GEFS are 
added to the the 1200 UTC HRRR forecasts.  The GEFS perturbations are scaled such that the ensemble 
spread at the lateral boundaries is similar to that provided previously by the experimental HRRR 
ensemble.  Table 11 provides a summary of the model specifications for the cb-WoFS, and Figure 1 shows 
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an example of a SPC Day 1 convective outlook and corresponding cb-WoFS domain with WSR-88D radars 
used for data assimilation overlaid.  Further details on the cb-WoFS are included below. 

The 36-member cb-WoFS, run from 1500 UTC Day 1 to 0300 UTC Day 2, cycles its data 
assimilation every 15 minutes by GSI-EnKF assimilation of MRMS radar reflectivity and radial velocity 
data, cloud water path retrievals and clear-sky radiances from the GOES-16 imager, and Oklahoma 
Mesonet observations (when available). Conventional (i.e., prepbufr) observations are also assimilated 
at 15 minutes past each hour. All cb-WoFS ensemble members use the NSSL 2-moment microphysics 
parameterization and the RUC land-surface model; however, the PBL and radiation physics options are 
varied amongst the ensemble members to increase ensemble spread, given the fact that the EnKF may 
underrepresent model physics errors. 6-h (3-h) forecasts are initialized and launched from the first 18 
members from the real-time cb-WoFS analyses on each hour (half-hour). The first available forecast is 
launched at 1700 UTC Day 1 and the last at 0300 UTC Day 2.  These forecasts will be viewable using the 
web-based cb-WoFS Forecast Viewer (https://cbwofs.nssl.noaa.gov). 
 
Table 11 cb-WoFS configuration. 

 WoFS 
Model Version WRF-ARW v3.9+ 
Grid Dimensions 300 x 300 x 50 
Grid Resolution 3 km 
EnKF cycling 36-mem. w/ GSI-EnKF every 15 min 
Observations - Prepbufr conventional observations 

- Oklahoma Mesonet (when available) 
- MRMS reflectivity ≥ 15 dBZ; radar ‘zeroes’; radial velocity 
- GOES-16 cloud-water path & clear sky radiances 

Radiation LW/SW Dudhia/RRTM, RRTMG/RRTMG 
Microphysics NSSL 2-moment 
PBL YSU, MYJ, or MYNN 
LSM RUC (Smirnova) 

 

Figure 1 SPC 1630 UTC issued Day 1 convective outlook (left) and corresponding WoFS grid (right). 
 
 
d) Iowa State University (ISU) Machine Learning-based Severe Wind Probabilities (credit: W. Gallus) 
 

Machine-learning-based tools will be used to derive probabilities that thunderstorm wind 
damage reports were truly due to severe intensity winds (50 knots or more).  It is well-known that there 
are deficiencies in the way that estimated wind values are currently assigned to thunderstorm wind 
damage reports.  Roughly 90% of all reports do not have a measured value, and instead are given an 
estimate, with an artificial spike in the frequency of 50 knot (39%) and 52 knot (60 mph; 25%) values. 



 

 
12 

The 50 knot estimates often appear for reports involving tree damage, implying that many of these 
reports may be due to winds weaker than severe intensity. 

Several machine learning algorithms were trained on thunderstorm wind damage reports that 
had a measured wind value assigned to them during the 2007-2017 period.  In addition, algorithms were 
re-trained with an independent dataset of sub-severe thunderstorm wind measurements added.  Based 
on past evaluations, it appears two algorithms, the gradient boosted machine (a single model) and the 
stacked generalized linear model (an ensemble approach) performed best, and both were most skillful 
when the sub-severe data were used in training.  Therefore, output from both of these algorithms will 
be evaluated.   

The training of these models utilized information from the Storm Events database, including 
textual damage reports, along with SPC mesoanalysis output for 31 weather parameters over a 200 x 
200 km box centered on the storm reports at the nearest hour prior to the report occurrence, population 
density, and elevation data. Probabilities derived from the two machine learning models will be 
available.  An example is shown in Figure 2.  

 

 
Figure 2 SPC Day 1 probabilities of damaging wind gusts ( ≥ 50 knots) within 40-km of a point (shaded)).  The color of the 

points indicates the ML-based probability that the report was associated with an actual wind gust ≥ 50 knots. Points 
labeled with a star represent station measurements near in time and space to a storm report that did not reach 50kts.  

 
 
e) Calibrated Forecast Products 
 

i. NCAR ML-derived HRRR-based convective hazard probabilities using convective mode 
information (credit: Ryan Sobash) 
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For the 2023 HWT SFE, gridded probabilistic convective hazard guidance is being generated using 
a neural network (NN) and the 00 UTC operational HRRR. The NNs generate probabilistic predictions for 
six hazards and were trained with 42 base diagnostics (Table 11) output from a set of 365 00 UTC HRRRX 
forecasts in 2021. The settings used to construct and train the NN are provided in Table 12. The HRRR 
diagnostics are upscaled to an 80-km grid and each grid point was labeled as a “hit” if a severe weather 
report occurred within a spatial and temporal neighborhood. Storm reports and output probabilities 
include the three report types, two significant report types, and the occurrence of any storm report. 
The system was trained to predict the occurrence of these report types within 2-hr (i.e., a 4-hr window) 
and 40-km of each grid point. 

A new version of the system is being tested in 2023 that includes 6 new predictors related to 
convective mode. The convective mode predictors are derived from output from two machine learning 
algorithms that classify each HRRR storm into one of three convective modes (supercell, QLCS, or 
disorganized). These storm-based mode classifications are then gridded and added to the 42 base 
predictors from the HRRR. Evaluations will take place between the two versions of the system, one with 
and one without the convective mode predictors to determine where and when differences emerge. 

 
Table 12 The 55 predictors used to train the NNs. The mean of the environmental and upper-air fields, and the maximum of 

the explicit fields, within each 80-km grid box, was used as input into the NNs. Neighborhood predictors were constructed 
by taking larger spatial and temporal means and maximums of the environmental and explicit fields. Fields in red were 
added into the version of the system using convective mode information. 

Base Predictor Type Base Predictor Type 
Forecast Hour Static 700 hPa–500 hPa lapse rate Environment 
Day of Year Static Freezing level height Environment 
Local Solar Hour Static Hrly-max 2–5km UH Explicit 
Latitude Static Hrly-max 0–3km UH Explicit 
Longitude Static Hrly-max 2–5km UH (negative) Explicit 
Surface-based CAPE Environment Hrly-max 0–2km UH Explicit 
Most-unstable CAPE Environment Hrly-max 1 km relative vorticity Explicit 
Surface-based CIN Environment Hrly-max updraft speed below 400 hPa Explicit 
Mixed-layer CIN Environment Hrly-max downdraft speed below 400 hPa Explicit 
0–6km bulk wind difference Environment Hrly-max 10-m wind speed Explicit 
Surface-based LCL Environment Hrly-max column-integrated graupel mass Explicit 
0–1km bulk wind difference Environment Hourly precipitation accumulation Explicit 
0–1km storm-relative helicity Environment Hrly-max lightning diagnostic Explicit 
0–3km storm-relative helicity Environment Hrly-max Thompson hail diagnostic Explicit 
2-m temperature Environment 925 hPa, 850 hPa, 700 hPa, and 500 hPa zonal wind Upper-air 
2-m dew point temperature Environment 925 hPa, 850 hPa, 700 hPa, and 500 hPa meridional wind Upper-air 
Surface pressure Environment 925 hPa, 850 hPa, 700 hPa, and 500 hPa temperature Upper-air 
Most-unstable CAPE x 0-6km bulk wind diff. Environment 925 hPa, 850 hPa, 700 hPa, and 500 hPa dew point Upper-air 
Significant tornado parameter Environment   
Conv. neural network supercell prob. Mode Dense neural network supercell prob. Mode 
Conv. neural network QLCS prob. Mode Dense neural network QLCS prob. Mode 
Conv. neural network disorganized prob. Mode Dense neural network disorganized prob. Mode 
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Table 13 Settings used to construct and train the NNs. 

Neural Network Hyperparameter Value 
Number of hidden layers 1 
Number of neurons in hidden layer 16 
Dropout rate 0 
Learning rate 0.001 
Number of training epochs 30 
Hidden layer activation function Rectified Linear Unit 
Output layer activation function Sigmoid 
Optimizer Stochastic Gradient Descent 
Loss function Binary Cross-entropy 
Batch size 1024 
Regularization L2 
Batch normalization On 

 
ii) NSSL ML Random Forest Hazard Probabilities (credit: Eric Loken) 

 
Automated “first guess” Day 1 (12-36 h lead times; 1200 UTC – 1200 UTC) and Day 2 (24-48 h 

lead times; 1200 UTC – 1200 UTC) hazard probabilities are created from random forests (RFs) trained on 
HREFv3 fields and observed SPC storm reports. Separate RFs predict the probability of tornadoes, severe 
hail, and severe wind. These predictions are made on an 80 km CONUS grid but are bilinearly interpolated 
to the native HREF grid for the SFE. The tornado-, severe hail-, and severe wind-predicting RFs use the 
same set of predictors for a given lead time. These predictors are derived from preprocessed HREFv3 
variables. The procedure for creating the predictors is as follows:  

1. Aggregate HREFv3 fields in time by computing a maximum or minimum over the forecast period.  
2. Upscale the temporally-aggregated fields to an 80 km grid.  
3. Compute the ensemble mean for each field on the 80 km grid.  
4. Spatially smooth the daily maximum 2-5 km updraft helicity (UH2-5km) forecasts from each 

HREFv3 member using a 2-dimensional Gaussian kernel density function with s = 90 km. 
5. The final predictors include ensemble mean temporally-aggregated fields, spatially-smoothed 

individual-member UH2-5km, and 0-1 km relative vorticity from the two HRRR members. 
Predictors are taken from the point of prediction as well as the closest eight additional 80 km grid 
points. Latitude and longitude at the point of prediction are also included. Predictors are 
summarized in Table 14.  

HREFv3 data and observed SPC storm reports from 392 days between March 2021 and April 2022 
are used for training. The overall procedure for creating RFs is similar to that described in Loken et al. 
(2020). Key differences from past SFEs include the removal of most raw environmental field predictors 
(e.g., 2-m temperature) and the addition of: period-minimum storm and index predictors, individual-
member smoothed UH2-5km, skewness of UH2-5km at the time of maximum (or minimum) UH2-5km, 
and 0-1km relative vorticity from the HRRR members.  
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Table 14 RF predictor fields, organized by the temporal aggregation strategy. Ensemble summary strategy (e.g., the use of an 
ensemble mean vs. individual members) is reported in parentheses.  

Period Maximum Period Minimum Constant 
2-5 km Updraft Helicity (Ens. mean)  2-5 km Updraft Helicity (Ens. mean)  Latitude 
Upward Vertical Velocity (Ens. mean)   Downward Vertical Velocity (Ens. mean)  Longitude 
0-3 km Storm Relative Helicity (Ens. mean)  0-3 km Storm Relative Helicity (Ens. mean)   
0-1 km Storm Relative Helicity (Ens. mean)  0-1 km Storm Relative Helicity (Ens. mean)   
0-3 km Energy Helicity Index (Ens. mean) 0-3 km Energy Helicity Index (Ens. mean)   
0-1 km Energy Helicity Index (Ens. mean) 0-1 km Energy Helicity Index (Ens. mean)   
1 km AGL Reflectivity (Ens. mean)   
0-3 km Updraft Helicity (Ens. mean)   
10 m Wind Speed (Ens. mean)    
(MUCAPE) x (10 m – 500 hPa wind shear magnitude) (Ens. mean)    
 Supercell Composite Parameter  (Ens. mean)    
Significant Tornado Parameter (Ens. mean)   
Significant Hail Parameter (Ens. mean)    
Smoothed Skewness of UH (2-5 km AGL) within a 39-km square radius 
at time of maximum or minimum UH (Ens. mean)  

  

Smoothed 2-5km Updraft Helicity (Individual members)    
0-1 km Relative Vorticity (HRRR and HRRR time-lagged members)    

 
iii. Colorado State University (CSU) GEFS-based, ML-derived Hazard Probabilities (credit: A. Hill) 
 
Similar to the 2022 SFE, for the 2023 SFE the Colorado State University Machine Learning 

Probabilities (hereafter, CSU-MLP) prediction system is forecasting severe weather hazards through the 
application of RFs. The CSU-MLP RFs are trained with about 9 years of daily 0000 UTC initializations from 
the FV3 global ensemble forecast system reforecast dataset (GEFSv12) along with reports of severe 
weather. For consistency with SPC outlooks as well as SFE activities, RFs are trained separately for 
individual hazards in the day 1-3 timeframes, such that separate forecasts are issued for each hazard 
type (example in Figure 3). Then, for days 4-7, forecasts are issued for any hazard type.   

Predictors from the FV3-GEFS/R correspond to parameters expected to be related to severe 
weather occurrence, including bulk wind shear, convective available potential energy, low-level wind 
and thermodynamics, as well as derived quantities like lifting condensation level; all predictors are listed 
in Table 15. To be consistent across variables and times, all predictors are gridded to a 0.5 degree grid 
for preprocessing. Severe weather reports (i.e., storm data) are similarly gridded over the training 
period, where each point is labeled a 0, 1, or 2 for the occurrence of no severe report, a severe report, 
and a significant severe report. For every gridded event of severe weather across the contiguous United 
States, predictors are selected around the training point with spatiotemporal dimensions to capture any 
pre-existing dynamical model biases from the FV3-GEFS/R, which allows the RFs to learn predictor biases 
during training. Spatially, predictors are gathered within a latitudinal and longitudinal radius (set to 3 in 
these models) around the training point so each grid point represents a separate predictor. Temporally, 
this procedure is followed at each model output time over the forecast window; the new FV3-GEFS/R 
has 3-hourly output through day 10. For example, during the day-1 period, predictors are gathered 3-
hourly from forecast hour 12 through hour 36, totaling nine predictor times. The predictor assembly 
results in approximately 6,500 predictors for each training point in which to build the RFs. 
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Table 15 Short-hand notation (left) and long description (right) of predictor variables used to train CSU-MLP severe weather 
RFs. Derived variables from FV3-GEFS/R output are denoted with an asterisk (*). 

Predictor Acronym Predictor Description 
APCP 3-hourly accumulated precipitation 
CAPE Convective available potential energy 
CIN Convective inhibition 
U10 10 m latitudinal wind speed 
V10 10 m longitudinal wind speed 
T2M 2 m temperature 
Q2M 2 m specific humidity 
MSLP Mean sea level pressure 
PWAT Precipitable water 
UV10 10 m wind speed 
SRH03 0 - 3km storm relative helicity 
SHEAR850* 0 - 850 hPa bulk wind shear 
SHEAR500* 0 - 500 hPa bulk wind shear 
ZLCL* Height of lifting condensation level 
RH2M* 2 m relative humidity 

 

 
Figure 3 Probabilistic day-3 forecasts of (upper left) tornado, (upper right) hail, and (bottom left) wind hazards valid 1200 - 

1200 UTC ending 23 March 2022. Hatched contours represent a 10% probability of significant severe hazards. 
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iv. NSSL GEFS-based, ML-derived Hazard Probabilities (credit: A. Clark) 
  
 NSSL has formulated a similar GEFS-based, random forest model to provide probabilities of any 
severe weather focused on lead times of 3 to 7 days.  The approach is similar to CSU, but the one key 
difference is that training for the NSSL algorithm uses operational GEFS forecasts from the period March 
2021 – February 2023, rather than GEFS reforecasts.  Using the operational GEFS forecasts allows us to 
utilize all 31 GEFS members in training, rather than 5 members, which are used in the CSU algorithm.  
However, the CSU-MLP is able to leverage a longer training period since the reforecasts are available 
over a longer time period.   
 
 v. NSSL GEFS-based, Environment-derived Hazard Probabilities (credit: K. Hoogewind) 
 
 For this product, 20 years of GEFS reforecasts are used to develop 3- and 24-h calibrated 
thunderstorm and severe thunderstorm probabilities for lead times of 3-7 days.  These products mirror 
counterpart products from SREF developed by the SPC.  During the 2021 and 2022 SFEs comparisons 
were made to the SREF calibrated products finding that the GEFS calibrated forecasts could provide 
similar or improved guidance for thunderstorm and severe weather hazards relative to SREF.  
 

vi. HREF/GEFS Calibrated Severe Weather Probabilities (credit: Chris Karstens/Israel Jirak) 
  
Calibrated probabilities for tornadoes, severe hail, and damaging winds valid over a 24-h time 

window corresponding to a convective day (i.e., 1200 – 1200 UTC) are produced using the following 
procedure.  At every grid-point for the valid forecast hour, two probabilities are paired (see Table 16 
below):  
 

1. Maximum neighborhood probability of HREF storm attribute variable(s).  For all three 
convective hazards, UH ≥ 75/100/200 m2s-2 for the ARW/NAM Nest/FV3 cores is used over 
all 4-h periods valid within the previous 24-h period.  In addition, severe wind guidance 
considers two additional storm attribute-based fields: the operational HREF Calibrated 
Thunder probabilities and the neighborhood probability of 10- m AGL Wind Speeds ≥ 30 kt, 
which are masked by the aforementioned UH probabilities exceeding 5%. 

 
2. Maximum probability of GEFS environmental field(s) meeting a threshold over 3-h 
periods valid within the previous 24-h period.  These fields include the Significant Tornado 
Parameter (STP), Most-Unstable CAPE (MUCAPE), and Effective Bulk Shear. 

  
Note, the resulting calibrated wind probability field is the maximum of the three approaches 

listed in Table 16.  The historical frequency of a hazard report (or MESH ≥ 29 mm for MESH-Hail 
calibrated hazard probabilities) occurring within 25 miles of that grid point and within the 24-h period 
for that forecast pair of probabilities is substituted as the 24-h calibrated hazard probability.  
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Table 16 Environmental fields for each hazard used in the HREF/SREF, HREF/GEFS, and HREF/HREF calibrated probabilities. 

Hazard HREF Storm-Attribute Variables SREF/GEFS/HREF Environmental 
Variables 

Tornado Updraft Helicity ≥ Model/Core Threshold STP ≥ 1 

Hail Updraft Helicity ≥ Model/Core Threshold MUCAPE ≥ 1000 J/kg, Eff. Shear ≥ 20 kt 

Wind (Max of 3 
approaches) 

1. Updraft Helicity ≥ Model/Core Threshold 
2. Calibrated Thunder (UH ≥ 5% mask) 
3. 10 m AGL Wind ≥ 30 kt (UH ≥ 5% mask) 

1. MUCAPE ≥ 1000 J/kg, Eff. Shear ≥ 20 kt 
2. MUCAPE ≥ 250 J/kg, Eff. Shear ≥ 20 kt  
3. MUCAPE ≥ 1000 J/kg, Eff. Shear ≥ 20 kt  

 
 vii. STP-based tornado probabilities (STP Cal Circle; credit: Burkely Gallo) 
 
 Calibrated tornado probabilities valid over 24 h periods valid for 1200 – 1200 UTC on Day 1 and 
Day 2 are produced using the following procedure:  A distribution of the significant tornado parameter 
(STP) is formed for each grid point from points where UH in the following hour exceeds the 99.985th 
percentile (within each HREF member's climatology) within a 40 km radius. The 10th percentile of STP 
from that distribution is then assigned to each point at each hour, and then the maximum daily STP value 
for each point is used to assign a probability based on the climatological frequency of a tornado given a 
right-moving supercell and an STP value for each ensemble member. The mean probability at each point 
is taken across the members, and then a Gaussian smoother with σ = 50 km is applied.  For further 
details, see Gallo et al. (2018). 
 

iix.  STP-based tornado probabilities (STP Cal MCS-TF; credit: David Jahn) 
 

This method is similar to the STP Cal Circle method, except the 50th percentile of the STP 
distribution that is formulated from points within the inflow region (rather than a 40-km circular 
neighborhood).   The inflow area is defined as a quadrant region of 40-km radius that is centrally 
oriented along the direction of the environmental wind at 1 km AGL. In addition, tornado probabilities 
are calculated based on tornado frequency vs. STP curves that are specifically tailored for mesoscale 
convective systems (MCSs) at grid points for which an MCS is identified.   For all other grid points where 
UH exceeds the 99.985 percentile of climatology (indication of a rotating storm) the same tornado 
frequency vs. STP curve is used as with the Inflow method to calculate tornado probability (Jahn et al. 
2020, Thompson et al. 2017).   Storm mode, either MCS or supercell, is determined objectively at a grid 
point using pre-determined thresholds of either the skewness or standard deviation of the UH 
distribution within a 40-km radius (Jahn et al. 2022).  

 
ix. Nadocast, HREF/SREF ML-based hazard probabilities (credit: Brian Hempel) 

 
Nadocast is a machine learning system, initially focused on tornadoes, that aims to produce 

timely, calibrated, severe weather probabilities on the Day 1 time scale (2-35 hours). Probabilities are 
generated by gradient-boosted decision trees trained on 10,000+ storm and storm-adjacent hours of 
HREF and SREF outputs. Nadocast performs extensive feature engineering: each grid point from the 
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HREF (or SREF) hourly output is supplemented by adding spatial blurs of various radii, spatial gradients, 
parameters from 1 h future and 1 h past, summary statistics over a 3 h window, and additional 
information such as climatology and an estimate of recent convective forcing. To provide rotational 
invariance, winds at each grid point are rotated relative to an estimate of the 500m-5000m shear vector. 
The result is over 10,000 features per grid point per hour, upon which the decision trees operate to 
produce hourly probabilities. To capture uncertainty at longer lead times, different models are trained 
for short- (2-13hr), medium- (13-24hr), and longer-range (24-35hr) forecasts. Hourly probabilities are 
pooled into day-long guidance on a 15km grid and rescaled to follow the historical characteristics of SPC 
thresholds. A preliminary objective comparison (n=260 days) suggests performance that, on average, 
matches or slightly exceeds SPC 6Z Day 1 guidance for all three hazards. Only tornado probabilities were 
subjectively evaluated during SFE 2022, so SFE 2023 will be the first time that hail and wind probabilities 
will also be subjectively evaluated for Nadocast.  For wind, two sets of probabilities will be provided.  
One set will simply use the observed severe wind reports, and in another set of probabilities the 
observed wind reports used in training will be weighted to match the observed climatology of measured 
severe wind gusts, which is meant to account for the abundance of wind reports over eastern areas of 
the US that are sub-severe.  
 

x. Calibrated Ensemble tornado probabilities (Cal Ens; credit: David Jahn) 
 
 In an effort to summarize all of the HREF-based calibrated guidance products for tornado 
forecasting, five probabilistic products (NSSL ML Random Forest, HREF/GEFS, STP Cal Circle, STP Cal 
MCS-TF, and Nadocast) are processed as an ensemble.  Various ensemble products (mean, median, 90th 
percentile) can be derived from combining these independent calibrated products. 
 
 xi. Machine-Learning calibrated WoFS probabilities (credit: Monte Flora) 
 

A series of ML models are being developed to provide rapidly updating probabilistic guidance to 
human forecasters for short-term (e.g., 0-4 h) severe weather forecasts. We generated the feature 
inputs into the ML models from 18-member WoFS forecasts. Rather than producing a gridded ML 
product as with next-day (i.e., 12-36 h lead times) CAM products (e.g., Burke et al. 2019; Loken et al. 
2020; Sobash et al. 2020; Hill et al. 2020), the current method produces object-based predictions that 
are interpreted in an event-based framework—What is the likelihood that a given storm will produce a 
hazard within a 30 minute time window—as opposed to spatial probabilities (what is the likelihood of a 
hazard occurring within some prescribed distance of a point?; Fig. 4). The objects in this case are 
ensemble storm tracks which—conceptually—are regions bounded by the ensemble forecast 
uncertainty in storm location (determined by 30-min updraft tracks). An ensemble storm track can be 
composed of a single ensemble member’s storm track or some combination of up to all 18 ensemble 
members. We trained random forests, gradient-boosted trees, and logistic regression algorithms to 
predict which WoFS 30-min ensemble storm tracks will overlap a tornado, severe hail, and/or severe 
wind report.  
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Figure 4 Illustration of the distinction between event and spatial probabilities (Fig. 2 of Flora et al. 2019). 
 

The feature inputs were based on intra-storm and environmental variables from the WoFS and 
morphological variables describing the storm objects (Table 17).   
 
Table 17 Input variables from the WoFS. The asterisk (*) refers to negatively oriented variables. Values in the parentheses 

indicate those variables that are extracted from different vertical levels or layers.  

 
 

From these variables, we computed ensemble statistics as input features (more details in Flora 
et al. 2022). We show an example severe wind forecast from the logistic regression model in Fig. 5.  Each 
object is a composite of ensemble member forecast tracks of a storm, colored according to the 
probability of a severe wind report will occur within the region. For example, this guidance suggests that 
multiple cells within the MCS in Southern MS and AL have 40-60% chance of producing severe wind in 
the next hour.  
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Figure 5 Example forecast from the severe-wind-based logistic regression. Number overlays indicate the probability of a severe 

wind within that region.  

 

The product shown in Figure 5 is available every 5 min up to a lead time of 4 hrs. Due to chaotic 
evolution of thunderstorms, we also provide 1-hourly and 3-hourly summary products (Fig. 6). For 
example, in Figure 6, we compute the maximum tornado probability over the next hour. The guidance 
suggests a high tornado likelihood for the supercell in W TN and for the portion of the MCS over central 
MS, with a modest likelihood in southern MS.  

 

 
Figure 6 Example forecast of maximum tornado probability over the next hour. 
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xii. Machine Learning WoFS-PHI Spatial Hazard Probabilities (credit Eric Loken) 
 
 Multiple random forest (RF) machine learning models are trained to predict the probability of 
severe hail, wind, and tornadoes within varying spatial radii (e.g., 7.5, 15, 30, and 39km) and time 
windows (e.g., 30, 60, 90, and 180 minutes) at lead times between 30 minutes and 3 hours. The RFs are 
trained on forecast data from the Warn-on-Forecast System (WoFS) and gridded storm object attributes 
from ProbSevere Version 2 (PS2). MRMS-adjusted observed storm reports from the National Centers 
for Environmental Information Storm Events Database are used as the RF targets. The preprocessing 
steps are summarized in Figure 7, and the full set of predictors is summarized in Table 18.   
 There are two key differences between these WoFS-PHI probabilities and WoFS machine 
learning hazard probabilities that have been developed previously (Flora et al. 2022): first, the WoFS-
PHI probabilities are valid within specific spatial radii as opposed to for a given WoFS storm object; and 
second, the WoFS-PHI probabilities consider observation-based PS2 data in addition to WoFS forecasts. 
As a result, the WoFS-PHI probabilities rapidly account for the properties of both existing and future 
storms, and they are designed to update frequently (e.g., every 5 minutes) to consider the most recent 
observations. These updates will occur even if no new WoFS run is available. Feedback is solicited on 
the preferred spatial scale of these probabilities at varying lead times for the different hazards as well 
as on the product itself. 
 

 
 
Figure 7 Flowchart showing the preprocessing steps to create WoFS-PHI spatial hazard probabilities. Steps associated with 

the PS2, WoFS, and combined data, respectively, are colored in blue, red, and black.   
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Table 18 Summary of predictors used to create WoFS-PHI spatial hazard probabilities. Predictors are taken from the WoFS at 
the point of prediction (column 1), from the WoFS at multiple spatial neighborhoods (column 2), and from PS2 at multiple 
spatial neighborhoods (column 3).  

Single-Point WoFS 
(Values taken from point of prediction 

only) 

Multiple-Point WoFS 
(Values taken from within 0, 
15, 30, 45, and 60km of point 

of prediction) 

Multiple-Point ProbSevere 
(Values taken from within 0, 15, 30, 45, 

and 60km of point of prediction) 

10-500m bulk wind shear 80m wind speed Raw expanded, extrapolated PS2 
probability of hail, wind, and tornadoes 

10m wind components 1km Simulated reflectivity Spatially-smoothed expanded, 
extrapolated PS2 probability of hail, 
wind, and tornadoes 

2m temperature and dewpoint 0-2km vertical vorticity Age of storm object 
0-1, 0-3, and 0-6 km wind shear components 0-2 and 2-5km updraft helicity Extrapolation lead time (minutes) 
0-500m, 0-1km, and 0-3km storm relative 
helicity (SRH) 

Updraft speed (1km and 
column-maximum)  

14- and 30-minute hail, wind, and 
tornado PS2 probability changes 

Surface-based CAPE Flash extent density (FED)   
Significant Tornado Parameter (STP); 
Traditional and using 0-500m SRH 

 
Downdraft speed 

 

Supercell Composite Parameter (SCP) Mean sea level and surface 
pressure  

 

Cloud Top Temperature Ensemble probability of 
reflectivity exceeding 40 dBZ 

 

Surface-based LCL Individual-member 2-5km 
updraft helicity 

 

Predicted Hail   
Freezing Level   
Binary proxy variable indicating if storm was 
present in the WoFS initial conditions 

  

Latitude & Longitude   
 
xiii. HREF Calibrated Thunder (credit: D. Harrison) 
 
The HREF calibrated thunder (HREFCT; Harrison et al. 2022) guidance is a suite of probabilistic 

forecast products designed to predict the likelihood of at least one cloud-to-ground (CG) lightning flash 
within 20 km of a point during a given 1-, 4-, and 24-h time intervals.  This guidance takes advantage of 
a combination of storm attribute and environmental fields produced by the HREF to objectively improve 
upon lightning forecasts generated by the SREF.   

 
xiv. SPC Timing Guidance (credit: Israel Jirak)  
 
SPC Timing Guidance products (valid over 4-h time windows throughout the convective day) are 

generated for tornadoes, wind, and hail.  These products are created by using different datasets (i.e., 
HREF/SREF calibrated severe, HREF/GEFS calibrated severe, HREFCT, and Nadocast) that contain hourly 
4-h timing information to distribute probabilities from the SPC outlooks across the 20 to 12 UTC time 
frame.  Thus, they are a blend of the human forecast and various probabilistic calibrated guidance 
products.   
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f) SPC Impacts System 
 

SPC maintains an internal analytics system (e.g., Clark et al 2019) for quantifying the number of 
tornadoes and their potential impacts to society, using the Day 1 tornado forecast (both coverage and 
conditional intensity forecasts) as the initial input. From this input, the system runs a series of Monte-
Carlo-like simulations (currently set to n=10000 simulations) that draw from a number of historical 
distributions (tornado frequency per unit area, tornado rating, path length, direction) to produce n 
possible realizations of a tornado day. Each of these realizations are then overlaid on 1-km gridded 
societal data (e.g., population, schools) from the 2020 Census, such that the potential impact to society 
from each tornado (and thus each realization) can also be quantified. Additionally, a machine-
learning/regression workflow (trained on historical tornadoes from 1999 to 2021) is used to predict a 
number of injuries and fatalities associated with each tornado.  

With impact numbers across each of these realizations, the resultant distributions of potential 
impacts can be used to calculate descriptive statistics (e.g., 25th percentile, median, 75th percentile). 
Box-and-whisker plots are generated for the number of tornadoes (organized by rating), the number of 
injuries and fatalities, and the number of potential population, schools, and mobile homes impacted 
(e.g., Fig. 8). Thus, this system can be used to convert human-generated tornado forecasts into 
quantifiable impact data that can be communicated to partners in emergency management, etc. for 
improved preparedness. 
 

 
 
Figure 8 An example of tornado count and impact output from the IMPACTS system. Boxes represent the 25th-75th percentiles, 

while whiskers represent the 10th-25th and 75th-90th percentiles. The values of the 25th, 50th (median), and 75th 
percentiles are annotated on the individual box-and-whisker charts. 

 
 
3. SFE 2023 Core Interests and Daily Activities 
 
 2023 SFE activities will occur from 9am-4pm CDT on Mondays, and 8:45am-4pm Tuesday-
Friday with an optional 8-8:45am period for map analysis, data loading, and networking.  Each day will 
have a lunch break from 12:30-2pm CDT.  On Wednesdays there will be an optional science panel 
discussion from 1:15-2pm. Tables 19 and 20 provide a schedule for Monday, and Tuesday-Friday, 
respectively. Further details are provided in subsequent sections. 
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Table 19 Schedule for Monday.  

Time (CDT) 
 

9:00 AM – 9:45 AM  Welcome and Introductions 
Hybrid All (Israel Jirak & Participants) 

9:45 AM – 10:30 
AM 

HWT SFE Scientific Objectives and Goals 
Hybrid All (Israel Jirak & Adam Clark) 

10:30 AM – 10:45 
AM 

Break 
Fill out IRB Consent Form 

10:45 AM – 11:00 
AM 

Conditional Intensity Forecasting Overview 
Hybrid All (Israel Jirak) 

11:00 AM – 11:15 
AM 

Weather Briefing 
Hybrid All (David Imy) 

11:15 AM – 12:30 
PM 

Group Forecasting Activity (Coverage and Conditional Intensity Outlooks)  
In-Person R2O (Day 1); In-Person Innovation (Days 3 & 4); Virtual (Day 2) 

12:30 PM – 2:00 PM Lunch/Break 

2:00 PM – 2:15 PM Update on Today’s Weather 
Hybrid All (David Imy) 

2:15 PM – 3:15 PM Individual Forecasting Activity (Mesoscale Discussions and Discussion) 
In-Person R2O (Meso-beta MD); In-Person Innovation (WoFS MD); Virtual 

(WoFS MD) 
3:15 PM – 4:00 PM Individual Forecasting Activity Continued (MD & Day 1 Updates) 

In-Person R2O (Day 1 Update); In-Person Innovation (WoFS MD); Virtual 
(WoFS MD) 
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Table 20 Schedule for Tuesday – Friday. 

Time (CDT) 
  

8:00 AM – 8:45 AM  (Optional) Map Analysis, Data Loading, and Networking 
In-Person (Optional) 

8:45 AM – 9:00 AM  Overview of Yesterday’s Severe Weather 
Hybrid All (David Imy) 

9:00 AM – 10:30 AM Model & Outlook Evaluation (Orientation, Surveys, and Discussion) 
Hybrid Groups (Group 1; Group 2; Group 3) 

10:30 AM – 10:45 
AM 

Break 

10:45 AM –  11:00 
AM 

Evaluation Highlights 
Hybrid All (Group 1; Group 2; Group 3) 

11:00 AM – 11:15 
AM 

Weather Briefing 
Hybrid All (David Imy) 

11:15 AM – 12:30 
PM 

Group Forecasting Activity (Coverage and Conditional Intensity Outlooks)  
In-Person R2O (Day 1); In-Person Innovation (Days 3 & 4); Virtual (Day 2) 

12:30 PM – 2:00 PM Lunch/Break 
Science Discussion (Wednesdays @ 1:15) 

2:00 PM – 2:15 PM Update on Today’s Weather 
Hybrid All (David Imy) 

2:15 PM – 3:15 PM Individual Forecasting Activity (Mesoscale Discussions and Discussion) 
In-Person R2O (Meso-beta MD); In-Person Innovation (WoFS MD); Virtual 

(WoFS MD) 
3:15 PM – 4:00 PM Individual Forecasting Activity Continued (MD & Day 1 Updates) 

In-Person R2O (Day 1 Update); In-Person Innovation (WoFS MD); Virtual 
(WoFS MD) 

 
 
a. Formal Evaluation Activities 
 
 SFE 2023 will feature one period of formal evaluation from 9-11:00am CDT Tuesday-Friday.  The 
evaluations will be done in three hybrid groups (i.e., each group will have in-person and virtual 
participants) and involve comparisons of different ensemble diagnostics, CLUE ensemble subsets, HREF, 
and other products and guidance.  Additionally, the evaluations of yesterday’s experimental forecast 
products will be conducted during this time.  Participants will be split into Groups 1, 2, & 3, which will 
each conduct a separate set of evaluations.  In each group, for each set of evaluations, a short tutorial 
will be presented and then participants will conduct the evaluations independently while facilitators 
remain available for questions.  Following each set of evaluations, there will be a short discussion period 
during which participants can discuss noteworthy aspects of the evaluations, evaluation philosophy, 
questions, or any other topics related to the evaluations.  The evaluations will end at 10:30am, followed 
by a 15-minute break, and from 10:45-11:00am each evaluation group will have 5 minutes to discuss 
highlights from their group with all participants.  The evaluations are categorized as “CAM (E)nsembles”, 
“(D)eterministic CAMs”, “(A)nalyses”, “Funded (P)rojects”, “(C)alibrated Guidance”, or “(O)utlooks”. The 
letter in parentheses combined with a number is used to label the individual evaluations in each 
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category (e.g., E1 refers to the first CAM Ensemble evaluation).  Each evaluation group will conduct a 
mix of evaluations from each category.  The evaluations in each category are summarized below: 
 
(C)alibrated Guidance 
 
C1. Day 2 12Z HREF Calibrated Tornado Guidance 
 

Five different methods based on HREF for deriving calibrated Day 2 tornado guidance are 
subjectively rated along with an ensemble product derived from those methods.  These methods 
include: (1) HREF/GEFS Cal, (2) STP Cal Circle, (3) Nadocast, (4) ML Random Forest, (5) STP Cal MCS-TF, 
and (6) Cal Ens Mean.   
 
C2. Day 1 12Z HREF Calibrated Tornado Guidance 
 
 The same methods as in the Day 2 evaluation are rated for Day 1.   
 
C3. 1630Z 4-h SPC Tornado Timing Guidance (hourly 20-12Z)  
 
 Four different sets of timing guidance products are used to produce calibrated tornado guidance 
valid in hourly 4-h time windows between 20 and 12 UTC that is consistent with the operational SPC 
outlook. For each of the timing guidance products, timing information is used to distribute probabilities 
from the SPC outlooks across the 20 to 12 UTC time frame.  Timing guidance (TG) products are derived 
from four different inputs: (1) HREF/SREF TG, (2) HREF/GEFS TG, (3) HREFCT TG, and (4) Nadocast TG, 
each of which will be subjectively rated.  
 
C4. Day 2 12Z HREF Calibrated Hail Guidance 
 
 Three different methods based on HREF for deriving calibrated Day 2 hail guidance are 
subjectively rated.  These methods include: (1) HREF/GEFS Cal, (2) Nadocast, and (3) ML Random Forest. 
 
C5. Day 1 12Z HREF Calibrated Hail Guidance 
 

The same methods as in the Day 2 evaluation are rated for Day 1.  
 
C6. Day 1 12Z HREF Calibrated Hail Guidance: MESH (Maximum Estimated Size of Hail) 
 
 HREF/GEFS Cal (rating carried over previous evaluation) is compared to HREF/GEFS MESH for 
Day 1.  For this comparison, both the practically perfect probabilities derived from severe hail reports 
and the Multi-Radar, Multi-Sensor (MRMS) derived MESH are available.  
 
C7. 1630Z 4-h SPC Hail Timing Guidance (hourly 20-12Z) 
 
 The same approach used for Tornado Timing Guidance (C3) is used for hail. 
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C8. Day 2 12Z HREF Calibrated Wind Guidance 
 

Four different methods based on HREF for deriving calibrated Day 2 wind guidance are 
subjectively rated.  These methods include: (1) HREF/GEFS Cal, (2) Nadocast, (3) ML Random Forest, and 
(4) Nadocast Adj.  

 
C9. Day 1 12Z HREF Calibrated Wind Guidance   
 
 The same methods as in the Day 2 evaluation are rated for Day 1.  
 
C10. 1630Z 4-h SPC Wind Timing Guidance (hourly 20-12Z) 
 
 The same approach used for Tornado Timing Guidance (C3) is used for wind. 
 
C11. Medium Range 00Z GEFS Total Severe  
 
 Three different sets of extended range total severe probabilities for Day 3-7 lead times are 
subjectively rated.  These methods include: (1) CSU-MLP, (2) NSSL, and (3) NSSL ML. 
 
C12. 00Z HRRR NCAR NN Tor/Hail/Wind Guidance 
 
 Day 1 tornado, hail, and wind predictions from v2 of the NCAR NN hazard probabilities are 
compared in versions with and without convective mode information in the predictors.   
 
Primary Science Question(s): What are the strengths and weaknesses of the various calibrated hazard 
guidance, and what are the best approaches and techniques to develop calibrated hazard probabilities?
  
(O)utlook Evaluations 
 
O1. Day 1/2/3/4 Outlooks 
 
 The experimental Day 1-3 outlooks for tornado, wind, and hail, and Day 4 outlook for total severe 
produced by SFE teams are subjectively rated and compared. 
 
O2. Day 1 Outlook Update (w/ WoFS) 
 
 The Day 1 outlooks for tornado, wind, and hail are compared to the Day 1 outlook updates, which 
are produced utilizing WoFS by Forecaster #1, Forecaster #2, and a consensus of non-forecaster 
participants.   
 
Primary Science Question(s): How does the skill for tornado, hail, and wind severe outlooks vary with 
increasing lead time?  How skillful are the Day 4 total severe outlooks and was CAM guidance useful at 
this lead time? 
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O3.  SPC Impacts System: Day 1 Outlook Tornado Counts and Impacts 
 
 The SPC Impacts System is run on the Day 1 tornado outlooks with conditional intensity 
information to estimate the number of tornadoes by EF scale and the potential societal impacts. 
 
Primary Science Question(s): Would this information be helpful in communicating the potential severe 
weather impacts on a given day?  What is the best way to visualize this information? 
 
CAM (E)nsembles  
 
E1. CLUE: 00Z RRFS vs. HREF 
 
 This evaluation will feature an in-depth examination of severe storm attribute and 
environmental fields from 00Z initialized versions of RRFS and HREF for Day 1 lead times.  These 
comparisons will serve to unearth ways in which the currently operational CAM ensemble (the HREF) 
differs from a candidate to replace it (the RRFS), and whether the RRFS improves upon or degrades 
forecasts of the HREF for fields relevant to forecasting severe weather. A greater number of fields will 
be available for this comparison relative to other comparisons, allowing for participants to examine 
more facets of the guidance and identify potential contributions to severe convective hazard forecast 
success or failure.  
 
Primary Science Question(s): How do probabilistic forecasts of the RRFS compare to those of the HREF 
(e.g., spread and skill)? Are there systematic shortcomings or advantages of the RRFS?  
 
E2. CLUE: 12Z Day 1 RRFS Physics & Time-Lagging vs. HREF 
 
 Because of computational constraints, 6-hourly RRFS ensemble initializations may only have 6 
members when implemented operationally.  Thus, various time-lagging strategies will be tested to assess 
whether they can meet or exceed the skill of a 10-member RRFS ensemble initialized from a single time 
(t), as well as the operational baseline of HREF.  Additionally, the impact of mixed physics will be 
compared to a single-physics approach (with stochastic perturbations). Subjective ratings will be 
assigned to the following RRFS configurations based at 12Z: (1) RRFS (10 members at t), (2) RRFS-TL6 (6 
members at t and 6 members at t-6h), (3) RRFS-TL12 (6 members at t and 6 members at t-12h), (4) 
RRFSphys (10 members at t), (5) RRFSphys-TL6 (6 members at t and 6 members at t-6h), and (6) HREF.  
In the 6- and 12-h time lagged configurations, members RRFS (ctl), RRFS01, RRFS02, RRFS03, RRFS04, 
and RRFS05 will be used for the single-physics ensemble, and members RRFS (ctl), RRFSphys01, 
RRFSphys02, RRFSphys05, RRFSphys06, and RRFSphys07 will be used for the mixed-physics ensemble. 
 
Primary Science Question(s): Can time-lagging strategies help meet or exceed the skill of non-time-
lagged ensembles?  What are optimal time-lagging strategies? Does a mixed-physics ensemble improve 
the probabilistic forecasts compared to a single-physics ensemble? 
 
E3. CLUE: 12Z Day 2 RRFS Physics and Time-Lagging vs. HREF 
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 This evaluation is similar to E2, except for Day 2 lead times.  
 
Primary Science Question(s): Can time-lagging strategies help meet or exceed the skill of non-time-lagged 
ensembles?  What are optimal time-lagging strategies? Does a mixed-physics ensemble improve the 
probabilistic forecasts compared to a single-physics ensemble? 
 
E4. CLUE: Medium-Range Lead Time/Core/Members 
 
 Subjective ratings of forecast skill are assigned to CAM ensemble guidance from a 5-member 
subset of the NCAR FV3 and 5-member MPAS ensemble at lead times of 3-5 days.  Additionally, 
subjective ratings are assigned to the 10-member NCAR FV3 for lead times of 3-7 days. 
 
Primary Science Question(s): How does CAM ensemble forecast skill vary with increasing lead time?  
What is the maximum lead time at which CAM ensembles have value? What are the differences in 
forecast quality and characteristics between the FV3 and MPAS model cores for lead times of 3-5 days? 
 
(D)eterministic CAMs 
 
D1. CLUE: 00Z  Day 1 Deterministic Flagships 
 

This activity will focus on rating the primary deterministic CAMs provided by several SFE 
collaborators – GFDL (GFDL FV3), NSSL (NSSL MPAS RT), EMC/GSL (RRFS ctl), and NASA (NASA FV3) – 
based on their skill and utility for severe weather forecasting. These runs will be compared to the 
operational HRRR, which was developed by GSL.   Particular attention will be given to simulated storm 
structure, convective evolution, and location/coverage of storms. Storm surrogate fields, like hourly 
maximum updraft helicity, will also be examined to gauge their utility for forecasting severe storms.    
 
Primary Science Question(s): How do various deterministic CAMs compare to the operational standard 
for convective forecasting (i.e., WRF-ARW-based HRRRv4)? 
 
D2. CLUE: 00Z Day 2 Deterministic Flagships 
 
 Five deterministic CAM configurations are subjectively evaluated for Day 2 lead times.  These 
configurations include: (1) NAM Nest, (2) RRFS, (3) NSSL MPAS RT, (4) GFDL FV3, and (5) NASA FV3.  
 
Primary Science Question(s): What strategies for CAM configurations perform the best at Day 2 lead 
times, and what are their forecast characteristics at Day 2 lead times for severe weather forecasting 
applications? 
 
D3. CLUE: RRFS vs. HRRR 
 
 This activity will feature a "deeper dive" into storm attribute and environmental fields in HRRR 
and RRFS.  These comparisons will serve to unearth ways in which the currently operational CAM (the 
HRRR) differs from a candidate to replace it (the RRFS), and whether the RRFS improves upon or 
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degrades forecasts of the HRRR for fields relevant to forecasting severe weather. A greater number of 
fields will be available for this comparison relative to other comparisons, allowing for participants to 
examine more facets of the guidance and identify potential contributions to severe convective hazard 
forecast success or failure.  
 
Primary Science Question(s): How do forecasts of the RRFS compare to those of the HRRR? Are there 
systematic shortcomings or advantages of the RRFS? 
 
D4. CLUE: RRFS vs. HRRR DA 
 
 The HRRR and RRFS are examined in the first 12 hours of the forecast period for 21 and 00Z 
initializations to evaluate the impact of their data assimilation. 
 
Primary Science Question(s): How do the data assimilation strategies in HRRR and RRFS impact short-
term convective weather forecasts? 
 
D5. CLUE: 00Z MPAS 
 
 The three configurations of MPAS run by NSSL are assigned subjective ratings.  These 
configurations include: (1) NSSL MPAS HT, (2) NSSL MPAS HN, and (3) NSSL MPAS RT.  “HT” refers to 
HRRR initialization with Thompson microphysics, “HN” is HRRR initialization with NSSL microphysics, and 
“RT” is RRFS initialization with Thompson microphysics (Table 5).    
 
Primary Science Question(s): What is the impact of Thompson vs. NSSL microphysics parameterizations 
in MPAS configurations initialized from HRRR for severe weather forecasting applications?  In similarly 
configured MPAS runs, what is the impact of initializing with the HRRR vs. the RRFS? 
 
D6. CLUE: 1-km vs. 3-km 
 
 This comparison will focus on comparing the NSSL1 and HRRR configurations of WRF-ARW, which 
have 1- and 3-km grid-spacing, respectively.  Particular attention will be given to unique storm attribute 
fields such as 0-1 km AGL UH and 0-2 km AGL maximum wind.  It is hypothesized that for these fields, 
the enhanced resolution of NSSL1 will provide improved guidance for hazards like tornadoes, whose 
parent mesocyclones and associated low-level rotation are better resolved using 1-km grid-spacing, and 
wind, which is better resolved at higher resolutions.   
 
Primary Science Question(s): Does decreasing horizontal grid-spacing from 3- to 1-km provide benefits 
when utilizing storm diagnostics that reflect the intensity of low-level rotation important for tornado 
prediction and the strength of convective wind gusts?   
 
(A)nalyses 
 
A1. Mesoscale Analysis Background  
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 Hourly versions of the 3D-RTMA using HRRR as the background will be compared to another 
version using RRFS as the background to assess the role that the background first-guess plays on the 
final analysis.  Comparisons will be conducted using the analyses on their native 3-km grids, as well as 
upscaled to 40-km grids, so that equitable comparisons can be made to the sfcOA. The goal is to assess 
the utility of these analysis systems for situational awareness and short-term forecasting for convective-
weather scenarios.  
 
Primary Science Question(s): What are the optimal methods for producing quality mesoscale analyses 
for convective forecasting applications? 
 
A2. Storm Scale Analysis 
 

WoFS-based “analyses” (actually 15-minute maximum forecasts) of 80-m wind are compared to 
preliminary local storm reports, including gust measurements and estimates.  Additionally, similar 
WoFS-based, 15-minute maximum 2-5 km AGL UH and updraft speed are compared to MRMS Mid-Level 
Rotation Tracks (MLRT) and MRMS MESH, respectively.     
  
Primary Science Question(s): Can a high resolution, rapidly updating ensemble DA system serve as a 
verification source for severe winds, mesocyclone tracks, and hail?   
 
Funded (P)roject Evaluations 
 
P1. ISU ML Severe Wind Probabilities 
 
 An evaluation will be conducted of different techniques to produce ML-based probabilities to 
estimate the likelihood that a damaging wind report was caused by wind ≥ 50 knots.  The evaluations 
will focus on perceived usefulness of the output via comparison with SPC forecasts of severe wind 
probability, best methods to display the information, and subjective evaluation of two different ML 
techniques.  
 
Primary Science Questions: Can machine-learning approaches provide useful information regarding the 
likelihood of wind damage reports being associated with gusts ≥ 50 knots?  Is it preferred to provide the 
probabilities from only the algorithm determined to be the best by objective skill metrics, or instead 
probabilities from several machine-learning algorithms? 
 
P2. WoFS-PHI Spatial Hazard Probabilities 
 
 This evaluation will assess the utility of grid-based, machine-learning probabilities that use input 
from ProbSevere and WoFS to produce short-term calibrated severe hazard guidance at lead times up 
to 3 hours.  With probabilities produced for 7.5-, 15-, 30-, and 39-km radii, participants will be asked to 
identify the spatial scale of probabilities that are most useful for providing skillful guidance. 
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Primary Science Question(s): What are the minimum spatial scales for probabilities that provide useful 
guidance?  Does this minimum spatial scale vary according to lead time?  Does this minimum spatial scale 
vary depending on whether the regime is pre- or post-CI? 
  
 
b. Forecast Products and Activities 
 
 There will be two periods of experimental forecast activities during SFE 2023.  The first will occur 
from 11:00am – 12:30pm CDT and will focus on generating probabilistic outlooks for individual hazards, 
as well as more precise information on the intensity of specific hazards.  Participants will be split into 
three groups: (1) In-Person R2O, (2) In-Person Innovation, and (3) Virtual.  As the naming convention 
suggests, in-person participants will be in R2O and Innovation groups, while all virtual participants will 
be in the Virtual group.  The In-Person R2O group will issue products for Day 1, the Virtual group will 
issue products for Day 2, and the In-Person Innovation group will issue products for Days 3 & 4. The 
experimental forecasts will cover a limited-area domain typically covering the primary severe threat 
area with a center-point selected base on existing SPC outlooks and/or where interesting convective 
forecast challenges are expected.  The Day 3 & 4 forecast is the only exception to the smaller domain, 
and will instead cover a full CONUS domain.  Also, the Day 4 outlooks will only cover total severe (i.e., 
no individual hazards or conditional intensity forecasts). 

In all groups, the morning forecasts will be done collectively.  The individual hazard forecasts will 
mimic the SPC operational Day 1 & 2 Convective Outlooks by producing individual probabilistic coverage 
forecasts of large hail, damaging wind, and tornadoes within 25 miles (40 km) of a point.  The Day 1 
outlooks will cover the period 1800 UTC to 1200 UTC the next day, while the Days 2, 3, & 4 outlooks will 
cover 1200 – 1200 UTC periods.  Additionally, for experimental outlooks covering Days 1, 2, & 3, 
conditional intensity forecasts of tornado, wind, and hail will be issued, in which areas are delineated 
with reports that are expected to follow intensity distributions defined by conditional intensity groups 
(see more information below).  These conditional intensity forecasts are similar to those issued during 
SFEs 2019-2022.  When generating Day 1 Convective Outlooks, SPC forecasters draw probabilities that 
represent the chance of each hazard occurring within 25 miles of a point. Forecasters can also delineate 
“hatched” areas, which represent regions with a 10% chance or greater of significant severe weather 
(EF-2 or greater tornadoes, winds ≥ 65 kts, or hail ≥ 2-in.) within 25 miles of a point. Research by the SPC 
has shown that, as the forecast coverage of a hazard increases, the expected intensity of the verifying 
reports also increases. For instance, on days where a “hatched” area is drawn and the maximum tornado 
coverage is 10 or 15%, 17% of the observed tornadoes are significant. When a “hatched” area is drawn 
and the maximum tornado coverage is 30% or higher, 32% of observed tornadoes are significant. In 
other words, as the forecast tornado coverage increases, the observed tornadoes grow progressively 
more intense, regardless of how many tornadoes occur; preliminary results show a similar pattern for 
wind and hail. Therefore, current coverage forecasts include intensity information that is not explicitly 
communicated to users, so coverage forecasts and intensity forecasts could be better 
labeled/communicated. These results have been used to identify four conditional intensity groups (CIG) 
that can be forecast via examination of the atmospheric environment: no CIG, CIG 0, CIG 1, and CIG 2. 
In plain language, CIG 0 refers to a typical severe weather day, where significant severe weather is 
unlikely, CIG 1 areas indicate where significant severe weather is possible, and CIG 2 areas indicate 
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where high impact significant severe weather is expected.  All groups will have access to all available 
operational and experimental guidance products for issuing their outlooks. 

The second period of experimental forecasting activities will occur during the 2-4pm CDT time 
period.  From 2-2:15pm CDT, a weather briefing led by Dave Imy will be conducted for all participants 
during which an update on current weather will be given. In the In-Person R2O group, the 2:15-3:15pm 
CDT time period will be devoted to an activity in which each participant will create their own Mesoscale 
Discussion (MD) Product using WoFS and other available CAM guidance within the SFE Drawing Tool.  
Then, during the 3:15-4pm CDT time period, each In-Person R2O participant will use WoFS and other 
available guidance to update the Day 1 individual hazard coverage and conditional intensity forecasts 
for the period 2100 – 1200 UTC. 

During the 2:15-4pm CDT time period in the In-Person Innovation Group and Virtual Group, 
another activity will be devoted to issuing short-term, meso-beta to meso-gamma scale predictions of 
severe weather.  In this activity, each participant will issue a forecast consisting of two parts: (1) a 
geographic threat area (i.e., graphic) and (2) a text discussion.  The geographic threat area will be 
created using the WoFS web viewer drawing tool and may take one of three formats: (1) A single contour 
highlighting a region of expected severe weather along the track of an individual storm, (2) two 
contours, one encompassing a broader region where severe weather is expected and the second, 
smaller contour outlining what is perceived as the corridor of greatest risk, or (3) A single contour that 
highlights a broader region where severe weather is expected.  Each participant will issue their first set 
of predictions during the 2:15-3pm CDT time period, and then from 3-3:15pm CDT each participant will 
have an opportunity to present and discuss their product.  Then, from 3:15-3:45pm CDT the outlooks 
and text discussions will be updated with a focus on how more recent observations and more up-to-
date WoFS guidance is influencing the perceived threat and confidence in the forecast. For example, 
does WoFS indicate increasing or decreasing likelihood of an event relative to previous guidance, or 
does the more recent guidance simple reinforce earlier guidance?  Finally, from 3:45-4pm each 
participant will participate in a short survey with some targeted questions on WoFS products used, 
changes in forecasts between 1st and 2nd hours, and overall confidence.   

These WoF activities are the seventh year the WoF Ensemble has been tested in the SFE to 
explore the potential utility of WoF products for issuing guidance between the watch and warning time 
scales (i.e. 0.5 to 6-h lead times). These activities explore ways of seamlessly merging probabilistic severe 
weather outlooks with probabilistic severe weather warnings as part of NOAA’s Warn-on-Forecast (WoF; 
Stensrud et al. 2009) and Forecasting a Continuum of Environmental Threats (FACETs; Rothfusz et al. 
2018) initiatives. These efforts also support the transition to higher temporal resolution forecasts at the 
SPC. 
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Appendix A: List of scheduled SFE 2023 participants.  Green denotes participants that are observing and not 
directly participating in activities.  

Week 1 Week 2 Week 3 Week 4 Week 5 
1-5 May 8-12 May 15-19 May 22-26 May 30 May - 2 June 

Lizzie Tirone (ISU) 
Marion Mittermaier (UK 
Met) Will Mayfield (NCAR/DTC) Austin Coleman (WPC) Cindy Wang (GFDL) 

Terra Ladwig (GSL) Ryan Sobash (NCAR) Steve Willington (UK Met) 
Steve Willington (UK 
Met) Curtis Alexander (GSL) 

Thomas Galarneau (NSSL) Mike Kavulich (DTC) Allie Mazurek (CSU) Ed Szoke (GSL) Brice Coffer (NCSU) 
Mark Jarvis (WFO LMK) Lauren Pounds (OU) Matt Morris (EMC) Craig Schwartz (NCAR) Marcel Caron (EMC) 
Derek Williams (WFO 
LKN) Lizzie Tirone (ISU) Bob Rozumalski (FDTD) Kelly Lombardo (PSU) Cameron Nixon (CMU) 
Andew Loconto (WFO 
BOX) Jeff Duda (GSL) Brian Haynes (MDL) Matt Kumjian (PSU) Jack Lind (AWC) 

Ted Mansell (NSSL) 
James Sullivan (WFO 
CLE) 

Nicholas Goldacker 
(NCSU) Ben Blake (EMC) Lizzie Tirone (ISU) 

Matt Flournoy (SPC) 
Sarah McCorkle (WFO 
MTR) Harald Richter (BoM) John Allen (CMU) Bill Gallus (ISU) 

Evan Bentley (SPC; M-W) 
Matthew Gropp (WFO 
CAE) Lizzie Tirone (ISU) Lizzie Tirone (ISU) 

Montgomery Flora 
(CIWRO/NSSL) 

Brian Squitieri (SPC; Th-F) Jaret Rogers (WFO BOI) Jeff Beck (GSL) Harald Richter (BoM) Brett Borchardt (WFO LOT) 

Chang Jae Lee (KMA) Chris Kerr (CIWRO/NSSL) John Boris (WFO APX) 
Sam Shamburger (WFO 
OHX) Matt Anderson (WFO TBW) 

Derek Stratman 
(CIWRO/NSSL) Matt Mosier (SPC; M-W) 

Michael Bowlan (WFO 
TSA) 

Justin McReynolds 
(WFO KEY) Jared Schadler (AWC) 

Jacob Widanski (OU/SoM) 
Brian Squitieri (SPC; W-
Th) Sam Childs (USAF) 

Bill Putman (NASA; M-
W) Mike Dutter (WFO AKQ) 

Greg Mcfarquhar (CIWRO; 
Th-F) Bryan Smith (SPC; T,F) Andy Dean (SPC; M-T) Andrew Bufalino (BoM) Corey Potvin (NSSL) 
Rebecca Cyr (EC; T) Patrick Burke (NSSL) Matt Mosier (SPC; W) Brad Vrolijk (EC; T) Ryan Rozinskis (EC; T) 
Ray Houle (EC; T) Jordan Dale (WPO; T) Aron Stanton (EC; T)   

***** VIRTUAL PARTICIPATION ***** 

Jana Houser (OSU) Michelle Harold (DTC) Matt Pyle (EMC) 
Alex Anderson-Frey 
(UW) Ben Price (Ohio) 

Geoff Manikin (EMC) Shun Liu (EMC) Gang Zhou (EMC) Abigail King (UW) Logan Dawson (EMC) 
Donald Lippi (EMC) Eric Aligo (EMC) Aaron Hill (CSU) Sho Yokota (EMC) Ed Colon (EMC) 

Jason Jordan (FDTD) Jacob Carley (EMC) 
Rosie Jones (M-W; UK Met 
Office) Michael Sessa (Illinois) Matt Eastin (UNCC) 

Becky Adams-Selin (AER) Russ Schumacher (CSU) Sean Whelan (OSU) Jason Puma (WFO IND) Shawn Murdzek (GSL) 

Mark Antolik (MDL) Dave Rudack (MDL) Kendall Parks (JSU) 
Derek Hodges (WFO 
TSA) Jeff Makowski (WFO ARX) 

Binbin Zhou (EMC) Nicholas Price (JSU) David Byers (WFO GJT) Brian Mejia (WFO BRO) Keith Sherburn (WFO UNR) 
Sarah Trojniak (WPC) Jimmy Correia (WPC) David Zaff (WFO BUF) Chris Melick (USAF) Eswar Iyer (WFO AKQ) 

Dave Ahijevych (NCAR) 
Christina Anderson (WFO 
RAH) Michael Laczko (BoM) Callum Stuart (BoM) Alyssa Bates (WDTD; PM) 

Brad Carlberg (WFO CAE) 
Robert Setzenfand (WFO 
BYZ) Alyssa Bates (WDTD; PM) 

Alyssa Bates (WDTD; 
PM)  

SFE Facilitators: Adam Clark (NSSL), Israel Jirak (SPC), Dave Imy (retired SPC), Tim Supinie (SPC), Kenzie Krocak 
(CIWRO/SPC/CRCM), Kent Knopfmeier (CIWRO/NSSL), Chris Karstens (SPC), Eric Loken (CIWRO/NSSL), David Harrison 
(CIWRO/SPC), David Jahn (CIWRO/SPC), Jacob Vancil (CIWRO/SPC), Jeff Milne (CIWRO/SPC), Andy Wade (CIWRO/SPC), Allie 
Brannan (CIWRO/SPC), Pamela Heinselman (NSSL), Joey Picca (CIWRO/SPC), Patrick Skinner (CIWRO/NSSL), Patrick Burke 
(NSSL), and Nathan Dahl (CIWRO/SPC). 
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Appendix B: Organizational structure of the NOAA/Hazardous Weather Testbed 
 

NOAA’s Hazardous Weather Testbed (HWT) is a facility jointly managed by the National Severe 
Storms Laboratory (NSSL), the Storm Prediction Center (SPC), and the NWS Oklahoma City/Norman 
Weather Forecast Office (OUN) within the National Weather Center building on the University of 
Oklahoma South Research Campus.  The HWT is designed to accelerate the transition of promising new 
meteorological insights and technologies into advances in forecasting and warning for hazardous 
mesoscale weather events throughout the United States.  The HWT facilities are situated between the 
operations rooms of the SPC and OUN.  The proximity to operational facilities, and access to data and 
workstations replicating those used operationally within the SPC, creates a unique environment 
supporting collaboration between researchers and operational forecasters on topics of mutual interest. 

The HWT organizational structure is composed of three overlapping programs (Fig. B1).  The 
Experimental Forecast Program (EFP) is focused on predicting hazardous mesoscale weather events on 
time scales ranging from hours to a week in advance, and on spatial domains ranging from several 
counties to the CONUS. The EFP embodies the collaborative experiments and activities previously 
undertaken by the annual SPC/NSSL Spring Experiments.  For more information see 
https://hwt.nssl.noaa.gov/efp/.  

The Experimental Warning Program (EWP) is concerned with detecting and predicting mesoscale 
and smaller weather hazards on time scales of minutes to a few hours, and on spatial domains from 
several counties to fractions of counties.  The EWP embodies the collaborative warning-scale 
experiments and technology activities previously undertaken by the OUN and NSSL.  For more 
information about the EWP see https://hwt.nssl.noaa.gov/ewp/.  A key NWS strategic goal is to extend 
warning lead times through the “Warn-on-Forecast” concept (Stensrud et al. 2009), which involves using 

Figure B1:  The umbrella of the NOAA Hazardous Weather Testbed (HWT) encompasses two 
program areas:  The Experimental Forecast Program (EFP), the Experimental Warning 
Program (EWP), and the GOES-R Proving Ground (GOES-R). 
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frequently updated short-range forecasts (≤ 1h lead time) from convection-resolving ensembles.  This 
provides a natural overlap between the EFP and EWP activities. 

The GOES-R Proving Ground (established in 2009) exists to provide demonstration of new and 
innovative products as well as the capabilities available on the next generation GOES-16 satellite.  The 
PG interacts closely with both product developers and NWS forecasters. More information about GOES-
R Proving Ground is found at http://cimss.ssec.wisc.edu/goes_r/proving-ground.html. 

Rapid science and technology infusion for the advancement of operational forecasting requires 
direct, focused interactions between research scientists, numerical model developers, information 
technology and communication specialists, and operational forecasters.  The HWT provides a unique 
setting to facilitate such interactions and allows participants to better understand the scientific, 
technical, and operational challenges associated with the prediction and detection of hazardous 
weather events.  The HWT allows participating organizations to: 

 
• Refine and optimize emerging operational forecast and warning tools for rapid integration into 

operations  
• Educate forecasters on the scientifically correct use of newly emerging tools and to familiarize 

them with the latest research related to forecasting and warning operations  
• Educate research scientists on the operational needs and constraints that must be met by any 

new tools (e.g., robustness, timeliness, accuracy, and universality)  
• Motivate other collaborative and individual research projects that are directly relevant to 

forecast and warning improvement 
 

For more information about the HWT, see https://hwt.nssl.noaa.gov/.  Detailed historical 
background about the EFP Spring Experiments, including scientific and operational motivation for the 
intensive examination of high resolution NWP model applications for convective weather forecasting, 
and the unique collaborative interactions that occur within the HWT between the research and 
operational communities, are found in Kain et al. (2003), Weiss et al. (2010 – see 
http://www.spc.noaa.gov/publications/weiss/hwt-2010.pdf), Clark et al. (2012; 2018; 2020; 2021; 
2022; 2023), and Gallo et al. (2017). 
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Appendix C: Mandatory 2023 CLUE Fields 

1. Mean Sea Level Pressure 26. CIN (most unstable) 
2. Composite reflectivity 27. CAPE (mixed layer) 
3. Reflectivity at -10 C 28. CIN (mixed layer) 
4. Maximum surface wind gust 29. 0-3 km AGL storm relative helicity 
5. hrly-max upward motion 100-1000 hPa 30. 0-1 km AGL storm relative helicity 
6. hrly-max downward motion 100-1000 hPa 31. 2-5 km AGL UH (instantaneous) 
7. Reflectivity at 1-km AGL 32. Echo Top Height 
8. Hrly-max reflectivity at 1-km 33. 300 hPa Height 
9. Hrly-max reflectivity at -10 C 34. 300 hPa u-wind 
10. Hrly-max 2-5 km AGL UH 35. 300 hPa v-wind 
11. Hrly-min 2-5 km AGL UH 36. 300 hPa temperature 
12. Hrly-max 0-3 km AGL UH 37. 500 hPa Height 
13. Hrly-min 0-3 km AGL UH 38. 500 hPa u-wind 
14. Surface Pressure 39. 500 hPa v-wind 
15. Surface Height 40. 500 hPa temperature 
16. 2-m temperature 41. 700 hPa Height 
17. 2-m dewpoint 42. 700 hPa u-wind 
18. 2-m relative humidity 43. 700 hPa v-wind 
19. 10-m u-wind 44. 700 hPa temperature 
20. 10-m v-wind 45. 850 hPa Height 
21. Hrly-max 10-m Wind Speed 46. 850 hPa u-wind 
22. Surface total precipitation (run total) 47. 850 hPa v-wind 
23. CAPE (surface parcel) 48. 850 hPa temperature 
24. CIN (surface parcel) 49. 850 hPa specific humidity 
25. CAPE (most unstable)  
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