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1. Introduction 
 

Each spring, the Experimental Forecast Program (EFP) of the NOAA/Hazardous Weather Testbed 
(HWT), organized by the Storm Prediction Center (SPC) and National Severe Storms Laboratory (NSSL), 
conducts a collaborative experiment to test emerging concepts and technologies designed to improve 
the prediction of hazardous convective weather.  The primary goals of the HWT are to accelerate the 
transfer of promising new tools from research to operations, to inspire new initiatives for operationally 
relevant research, and to identify and document sensitivities and the performance of state-of-the art 
experimental convection-allowing (1- to 3-km grid-spacing) modeling systems.   

The 2022 HWT Spring Forecasting Experiment (SFE 2022), a cornerstone of the EFP, will be 
conducted 2 May – 3 June.  Although we are transitioning back to in-person work, given continuing 
uncertainty related to the COVID-19 pandemic and the need for planning several months in advance, 
the 2022 SFE will be conducted virtually for the third consecutive year.  However, it is expected that this 
will be the final year of completely virtual SFEs.  Relative to SFE 2021, this year's virtual experiment will 
have a similar format with all participants participating in morning and afternoon forecasting activities, 
as well as next-day model evaluation activities.  As in previous years, a suite of new and improved 
experimental CAM guidance contributed by our large group of collaborators will be central to these 
forecasting and model evaluation activities.  These contributions comprise an ensemble framework 
called the Community Leveraged Unified Ensemble (CLUE; Clark et al. 2018).  The 2022 CLUE is 
constructed by using common model specifications (e.g., grid-spacing, model version, domain size, post-
processing, etc.) wherever possible so that the simulations contributed by each group can be used in 
carefully designed controlled experiments.  This design will once again allow us to conduct several 
experiments geared toward identifying optimal configuration strategies for deterministic CAMs and 
CAM ensembles.  The 2022 CLUE includes 60 members with 3-km grid-spacing, as well as a single 
member using 1-km grid-spacing.  The SFE 2022 will also involve the continued testing of the Warn-on-
Forecast System (WoFS, hereafter), which produces 18-member, 3-km grid-spacing forecasts, and will 
be used for the 6th year to issue very short lead-time outlooks.  This document summarizes the core 
interests of SFE 2022 with information on experiment operations.  The organizational structure of the 
HWT and information on various forecast tools and diagnostics can also be found in this document.  The 
remainder of the operations plan is organized as follows: Section 2 provides details on model and 
products being tested during SFE 2022 and Section 3 describes the core interests and new concepts 
being introduced for SFE 2022.  A list of daily participants, details on the SFE forecasting, and more 
general information on NOAA's HWT are found in appendices. 
 
2.  Overview of Experimental Products and Models  
 

Daily model evaluation activities will occur Tuesday through Friday from 9:15 – 11:00am (CDT) 
focusing on various CLUE subsets and calibrated guidance.  The 2022 CLUE includes deterministic and 
ensemble forecasts using the most recent versions of the Finite Volume Cubed-Sphere Limited Area 
Model (FV3-LAM), and the Advanced Research Weather Research and Forecasting (WRF-ARW) model.  
In addition to the CLUE, the operational 3-km grid-spacing High-Resolution Ensemble Forecast system 
version 3 (HREFv3) and High Resolution Rapid Refresh version 4 (HRRRv4) will be examined as the 
operational modeling baselines.  The rest of this section provides further details on each modeling 
system utilized in SFE 2022.   
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a) The 2022 Community Leveraged Unified Ensemble (CLUE) 
 
 The CLUE is a carefully designed ensemble with members contributed by NOAA units: NSSL, 
Environmental Modeling Center (EMC), Global Systems Laboratory (GSL), and Geophysical Fluid 
Dynamics Laboratory (GFDL); and research groups at the University of Oklahoma (OU): Multi-scale data 
Assimilation and Predictability (MAP) and Center for Analysis and Prediction of Storms (CAPS).  CLUE 
members have 3-km grid-spacing and a CONUS domain, except for one member that has 1-km grid-
spacing covering the eastern 2/3 of the CONUS.  Depending on the CLUE subset, forecast lengths range 
from 18 to 126 h.  Table 1 summarizes all 2022 CLUE contributions.  Subsequent tables provide details 
on members in each subset. 
 
Table 1 Summary of the 11 unique subsets that comprise the 2022 CLUE. 

Clue Subset # of 
mems 

IC/LBC 
perts 

Mixed 
Physics 

Data 
Assimilation 

Dynamical 
Core 

Agency Init. Times 
(UTC) 

Forecast 
Length (h) 

Domain 

RRFSp1 1 none no Hybrid 3DEnVar FV3 EMC/GSL 00, 12 60 CONUS 
RRFSp2e 10 EnKF no Hybrid 3DEnVar FV3 EMC/GSL 00 36 CONUS 

MAP-VTS-rad 10 GFS, GEFS no GSI-EnVar FV3 OU-MAP 00 36 CONUS 
MAP-VTS-con 10 GFS, GEFS no GSI-EnVar FV3 OU-MAP 00 36 CONUS 
MAP-VTS-bot 10 GFS, GEFS no GSI-EnVar FV3 OU-MAP 00 36 CONUS 

NSSL-FV3-LAM 1 none no GFS cold start FV3 NSSL 00 60 CONUS 
NSSL3  1 none no GFS cold start ARW NSSL 00 30 CONUS 
NSSL1 1 none no GFS cold start ARW NSSL 00 30 2/3 CONUS 

GFDL-FV3 1 none no GFS cold start FV3 GFDL 00 126 CONUS 

RRFSp2eMP 10 EnKF yes Hybrid 3DEnVar FV3 CAPS 00 84 CONUS 
RRFSphys 6 none yes Hybrid 3DEnVar FV3 CAPS 00 36 CONUS 

 

Table 2 Specifications for the RRFSp1 (prototype 1) CLUE member. RRFSp1 is a 3-km convection-allowing, deterministic system 
featuring hourly analysis updates via a hybrid 3DEnVar data assimilation framework and uses a partial cycling capability 
similar to that employed by the North American Mesoscale Model (NAM) and its nests as well as RAP/HRRR. The hybrid 
3DEnVar algorithm leverages the freely available EnKF members from the Global Data Assimilation System (GDAS) to 
provide flow-dependent information in the EnVar cost function; no 3-km ensemble information is used. However, a 3-km 
ensemble is used in RRFSp2. RRFSp1 is the control system for RRFSp2. RRFSp1 connects to RRFSp2 by providing high 
resolution, 3km central states at 1800 UTC to RRFSp2 around which Global Ensemble Forecast System perturbations are 
re-centered. 

Member:  
RRFSp1 

ICs LBCs Microphysics PBL LSM Radiation Dynamical Core 

RRFSp1 own GFS Thompson-Eidhammer MYNN RUC RRTMG FV3 
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Table 3 Specifications for the RRFSp2e ensemble. The RRFSp2e is a 10-member, 3-km grid-spacing CONUS FV3-LAM forecast 
system initialized 0000 UTC with forecasts to 36 h. The control member, RRFSp2, features hourly analysis updates via a 
hybrid 3DEnVar data assimilation framework using RRFSp1 as the initial state at 1800 UTC followed by six hours of cycling 
to 0000 UTC with the 3-km "RRFSDAS" ensemble that provides the flow-dependent information in the EnVar cost function 
during the hybrid analysis.  The RRFSp2 hybrid analysis is used to recenter the EnKF ensemble mean each hour thereby 
forming the control member of the EnKF ensemble.  The hybrid analysis also includes RAP/HRRR-like analysis components 
like adjustments to the soil temperature and moisture along with a non-variational cloud and precipitation hydrometeor 
analysis. RRFSp2e members 1-9 are perturbed forecasts initialized from the corresponding RRFSDAS members & also 
include stochastic parameter perturbations (SPP) applied to land-surface, PBL, and microphysics schemes.   

Members:  
RRFSp2e 

ICs LBCs Microphysics PBL LSM Radiation Dynamical 
Core 

RRFSp2 18Z RRFSp1 central 
state, hourly 3km 
hybrid 3DEnVar 

GFS Thompson-Eidhammer MYNN RUC RRTMG FV3 

RRFSp2e01 enkf_m01 GEFS Thompson-Eidhammer MYNN RUC RRTMG FV3 
RRFSp2e02 enkf_m02 GEFS Thompson-Eidhammer MYNN RUC RRTMG FV3 
RRFSp2e03 enkf_m03 GEFS Thompson-Eidhammer MYNN RUC RRTMG FV3 
RRFSp2e04 enkf_m04 GEFS Thompson-Eidhammer MYNN RUC RRTMG FV3 
RRFSp2e05 enkf_m05 GEFS Thompson-Eidhammer MYNN RUC RRTMG FV3 
RRFSp2e06 enkf_m06 GEFS Thompson-Eidhammer MYNN RUC RRTMG FV3 
RRFSp2e07 enkf_m07 GEFS Thompson-Eidhammer MYNN RUC RRTMG FV3 
RRFSp2e08 enkf_m08 GEFS Thompson-Eidhammer MYNN RUC RRTMG FV3 
RRFSp2e09 enkf_m09 GEFS Thompson-Eidhammer MYNN RUC RRTMG FV3 

 

Table 4 Specifications for the MAP VTS-rad ensemble members. These 3-km grid-spacing ensemble forecasts are run with 
FV3-LAM and initialized by a multiscale GSI-based hybrid EnVar DA system directly assimilating both conventional and 
radar reflectivity observations (Wang and Wang 2017, 2021). The base ensemble size is 36 members, initialized daily at 
1800 UTC from the GEFS. The EnVar control member is initialized from the 1800 UTC GFS control. LBCs are provided by 
re-centering GEFS around the GFS control. The system assimilates both operational RAP/HRRR in-situ data stream and 
MRMS radar reflectivity hourly during 1900-0000 UTC over the CONUS domain. This system includes valid time shifting 
(VTS; e.g. Gasperoni et al. 2022), which triples the ensemble size for radar EnVar component by including 36-member 
output 60-min before and after the each analysis time into the background error covariances. The 108-member VTS-
expanded ensemble covariances not only mimics the effect of directly tripling ensemble size, but also includes information 
of model timing/phase uncertainty in convective systems. The base ensemble members are updated separately with the 
EnKF and recentered around the final control EnVar analysis. A 10-member 36-h ensemble free forecast is initialized at 
0000 UTC from the final control analysis (MAP-VTS-rad_01) and 9 recentered ensemble members (MAP-VTS-rad_02-10). 
All members the “FV3_HRRR” CCPP physics suite. The 0000 UTC forecast also includes stochastic physics 
(SPPT/SKEB/SHUM/SPP). This configuration applies VTS only for the radar observations DA component. 

Members:  
MAP-VTS-rad ICs LBCs VTS 

component Microphysics PBL LSM Radiation Dynamical 
Core 

MAP-VTS-rad_01 EnVar GFS Radar Thompson MYNN RUC RRTMG FV3 
MAP-VTS-rad_02 rEnKF_m1 GEFS Radar Thompson MYNN RUC RRTMG FV3 
MAP-VTS-rad_03 rEnKF_m2 GEFS Radar Thompson MYNN RUC RRTMG FV3 
MAP-VTS-rad_04 rEnKF_m3 GEFS Radar Thompson MYNN RUC RRTMG FV3 
MAP-VTS-rad_05 rEnKF_m4 GEFS Radar Thompson MYNN RUC RRTMG FV3 
MAP-VTS-rad_06 rEnKF_m5 GEFS Radar Thompson MYNN RUC RRTMG FV3 
MAP-VTS-rad_07 rEnKF_m6 GEFS Radar Thompson MYNN RUC RRTMG FV3 
MAP-VTS-rad_08 rEnKF_m7 GEFS Radar Thompson MYNN RUC RRTMG FV3 
MAP-VTS-rad_09 rEnKF_m8 GEFS Radar Thompson MYNN RUC RRTMG FV3 
MAP-VTS-rad_10 rEnKF_m9 GEFS Radar Thompson MYNN RUC RRTMG FV3 
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Table 5 Specifications for the MAP VTS-con ensemble members. This configuration applies VTS only for the conventional 
observations DA component with a 60-min shifting window to account for time-related model uncertainty of the 
mesoscale environment. It does not use VTS for the radar (storm-scale) DA component. All other aspects of this DA system 
match the description in Table 5. This ensemble will only be examined post-experiment. 

Members:  
MAP-VTS-con ICs LBCs VTS 

component Microphysics PBL LSM Radiation Dynamical 
Core 

MAP-VTS-con_01 EnVar GFS Conventional Thompson MYNN RUC RRTMG FV3 
MAP-VTS-con_02 rEnKF_m1 GEFS Conventional Thompson MYNN RUC RRTMG FV3 
MAP-VTS-con_03 rEnKF_m2 GEFS Conventional Thompson MYNN RUC RRTMG FV3 
MAP-VTS-con_04 rEnKF_m3 GEFS Conventional Thompson MYNN RUC RRTMG FV3 
MAP-VTS-con_05 rEnKF_m4 GEFS Conventional Thompson MYNN RUC RRTMG FV3 
MAP-VTS-con_06 rEnKF_m5 GEFS Conventional Thompson MYNN RUC RRTMG FV3 
MAP-VTS-con_07 rEnKF_m6 GEFS Conventional Thompson MYNN RUC RRTMG FV3 
MAP-VTS-con_08 rEnKF_m7 GEFS Conventional Thompson MYNN RUC RRTMG FV3 
MAP-VTS-con_09 rEnKF_m8 GEFS Conventional Thompson MYNN RUC RRTMG FV3 
MAP-VTS-con_10 rEnKF_m9 GEFS Conventional Thompson MYNN RUC RRTMG FV3 

 

Table 6 Specifications for the MAP VTS-bot ensemble members. The configuration of this system matches the descriptions in 
Tables 5 and 6, where the VTS approach is used for both radar and conventional. This tests the VTS for simultaneous 
multiscale application of radar (storm-scale) and conventional (mesoscale) DA components. 

Members:  
MAP-VTS-bot ICs LBCs VTS 

component Microphysics PBL LSM Radiation Dynamical 
Core 

MAP-VTS-bot_01 EnVar GFS Conv & Radar Thompson MYNN RUC RRTMG FV3 
MAP-VTS-bot_02 rEnKF_m1 GEFS Conv & Radar Thompson MYNN RUC RRTMG FV3 
MAP-VTS-bot_03 rEnKF_m2 GEFS Conv & Radar Thompson MYNN RUC RRTMG FV3 
MAP-VTS-bot_04 rEnKF_m3 GEFS Conv & Radar Thompson MYNN RUC RRTMG FV3 
MAP-VTS-bot_05 rEnKF_m4 GEFS Conv & Radar Thompson MYNN RUC RRTMG FV3 
MAP-VTS-bot_06 rEnKF_m5 GEFS Conv & Radar Thompson MYNN RUC RRTMG FV3 
MAP-VTS-bot_07 rEnKF_m6 GEFS Conv & Radar Thompson MYNN RUC RRTMG FV3 
MAP-VTS-bot_08 rEnKF_m7 GEFS Conv & Radar Thompson MYNN RUC RRTMG FV3 
MAP-VTS-bot_09 rEnKF_m8 GEFS Conv & Radar Thompson MYNN RUC RRTMG FV3 
MAP-VTS-bot_10 rEnKF_m9 GEFS Conv & Radar Thompson MYNN RUC RRTMG FV3 

 

Table 7 Specifications for the NSSL FV3-LAM CLUE member.  This member is configured the same as the RRFSp1 and RRFSp2 
members (Tables 2 & 3), but with the NSSL microphysics scheme and cold start initialization from GFSv16 ICs/LBCs.   

 
Table 8 Specifications for the NSSL3 CLUE member. This member uses 3-km grid-spacing covering a CONUS domain with 

forecasts to 30 h using WRF-ARW version 4.2.  There are 41 vertical levels and the NSSL 2-moment microphysics scheme 
is used (Mansell 2010). 

Member:  
NSSL3 

ICs LBCs Microphysics PBL LSM Radiation Dynamical Core 

NSSL3 GFS GFS NSSL MYNN NOAH-MP RRTMG ARW 
 

Member:  
NSSL FV3-LAM 

ICs LBCs Microphysics PBL LSM Radiation Dynamical 
Core 

 NSSL-FV3-LAM GFS GFS NSSL MYNN NOAH RRTMG FV3 
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Table 9 Specifications for the NSSL1 CLUE member. This member uses 1-km grid-spacing covering the eastern 2/3 of the 
CONUS and is driven by NSSL3 using a one-way nest.  For computational efficiency, the 1-km nest does not start 
integration until 12 h into the NSSL3 forecast (i.e., 1200 UTC), and forecasts to 30 h (i.e., 0600 UTC the next day) are 
provided. 

Member:  
NSSL1 

ICs LBCs Microphysics PBL LSM Radiation Dynamical Core 

NSSL1 GFS GFS NSSL MYNN NOAH-MP RRTMG ARW 
 

Table 10 Specifications for the GFDL FV3 CLUE member. GFDL’s C-SHiELD (Harris et al., 2019) is an FV3-based model that uses 
a 13-km global grid and a 3-km CONUS nest, coupled to a modified form of the GFS Physics. C-SHiELD uses the GFDL In-
line Microphysics (Zhou et al. 2019; Harris et al. 2020) and the EMC/UW TKE-EDMF PBL scheme (Han and Bretherton 
2019). On the CONUS nest the Noah-MP LSM is used; the global domain uses the GFS Noah LSM. Initialization is cold 
start from regridded GFS real-time analyses. GFDL will provide simulations run daily at 00Z out to 126 hours to 
demonstrate the potential for medium-range prediction of convective-scale events. 

Member: 
GFDL FV3 

ICs LBCs Microphysics PBL LSM Radiation Dynamical Core 

gfdl-fv3 GFS n/a GFDL TKE-EDMF NOAH-MP RRTMG FV3 
 

Table 11 Specifications for the RRFSp2eMP ensemble members. This ensemble run by OU-CAPS uses initial conditions from 
RRFSp2 and the RRFSp2e ensemble members.  The FV3 model settings match the ones from RRFPp2e, except mixed 
physics are used. 

Members:  
RRFSp2eMP 

ICs LBCs Micro-
physics 

PBL Sfc. 
Phys. 

LSM Radiation Dynamical 
Core 

RRFSp2eMP_01 enkf_01 GEFS_m1 Thompson MYNN MYNN NOAH RRTMG FV3 
RRFSp2eMP_02 enkf_02 GEFS_m2 Thompson Shin-Hong GFS NOAH RRTMG FV3 
RRFSp2eMP_03 enkf_03 GEFS_m3 Thompson TKE-EDMF GFS NOAH-MP RRTMG FV3 
RRFSp2eMP_04 enkf_04 GEFS_m4 Thompson MYNN MYNN NOAH-MP RRTMG FV3 
RRFSp2eMP_05 enkf_05 GEFS_m5 Thompson TKE-EDMF GFS RUC RRTMG FV3 
RRFSp2eMP_06 enkf_06 GEFS_m6 NSSL MYNN MYNN NOAH RRTMG  FV3 
RRFSp2eMP_07 enkf_07 GEFS_m7 NSSL Shin-Hong GFS NOAH RRTMG FV3 
RRFSp2eMP_08 enkf_08 GEFS_m8 NSSL TKE-EDMF GFS NOAH-MP RRTMG FV3 
RRFSp2eMP_09 enkf_09 GEFS_m9 NSSL MYNN MYNN NOAH-MP RRTMG FV3 
RRFSp2eMP_10 enkf_10 GEFS_m10 NSSL TKE-EDMF GFS RUC RRTMG FV3 

 
Table 12 Specifications for the RRFSphys ensemble members. This ensemble run by OU-CAPS uses initial conditions from the 

mean of the RRFSp2e analyses, as well as the GFS. 

Members:  
RRFSphys 

ICs LBCs Micro- 
physics 

PBL Sfc. 
Phys. 

LSM Radiation Dynamical 
Core 

RRFSphys_01 RRFSp2e_mean GFS Thompson MYNN MYNN NOAH RRTMG FV3 
RRFSphys_02 RRFSp2e_mean GFS NSSL MYNN MYNN NOAH RRTMG FV3 
RRFSphys_03 RRFSp2e_mean GFS Thompson MYNN MYNN NOAH-MP RRTMG FV3 
RRFSphys_04 RRFSp2e_mean GFS NSSL TKE-EDMF GFS RUC RRTMG FV3 
RRFSphys_05 RRFSp2e_mean GFS Thompson TKE-EDMF GFS NOAH-MP RRTMG FV3 
RRFSphys_06_gfs GFS GFS Thompson MYNN MYNN NOAH RRTMG FV3 
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The configuration of the 2022 CLUE will allow for several unique experiments that have been 
designed to examine issues immediately relevant to the design of a NCEP/EMC operational CAM-based 
ensemble.  Some of the major themes are listed below: 
 
Valid-Time-Shifting Data Assimilation: The OU MAP group has a project to test the impact of a data 
assimilation approach known as Valid Time Shifting (VTS).  This approach is a cost-effective way to 
increase the membership (by a factor of three) for the background ensemble in convective scale, hybrid 
EnVar data assimilation.  The increased membership is achieved by populating the background ensemble 
with analyses valid at slightly different lead times.  An ensemble with VTS applied to radar data only 
(Table 4) will be compared to an ensemble with VTS applied to both radar data and conventional 
observations (Table 6).  Another ensemble with VTS applied only to conventional observations will also 
be examined post-experiment (Table 5). 
 
RRFS Configuration Strategies: Several different ensembles will be contributed and evaluated against 
HREFv3.  The goal is to identify a strategy within the UFS framework (i.e., single-model, FV3-LAM) that 
performs as good as or better than HREFv3, so that it can serve as a replacement in NCEP’s production 
suite.  These ensembles include RRFSp2e (Table 3), MAP-VTS-rad (Table 4), and RRFSp2eMP (Table 11).   
 
FV3-LAM Physics: CAPS will run several configurations of FV3-LAM that are identical except for their 
physics packages (Table 12).  This will allow an assessment of systematic differences and performance 
characteristics among the different physics suites.   
 
FV3-LAM Data Assimilation: EMC and GSL are running two deterministic RRFS prototypes.  Prototype 1 
(Table 2) uses partially cycled (hourly) ensemble data assimilation with GDAS (Global Data Assimilation 
System).  Prototype 2 starts from GDAS, but then engages an hourly cycled storm scale ensemble EnKF-
based system that informs hybrid deterministic analyses from which a deterministic forecast is launched 
at 0000 UTC (Table 3).  The goal here is to determine the impact of the more sophisticated DA approach 
(similar to RAP/HRRR, but in UFS framework), with an emphasis on the first 12 h of the forecast.   
 
Enhanced resolution: NSSL is running two versions of WRF-ARW with 3- and 1-km grid-spacing (Tables 
8 & 9, respectively) that will be compared to examine grid-spacing sensitivity and assess whether 
enhanced resolution can provide improved severe weather guidance.  Particular attention will be given 
to the depiction of storm structure and mode, as well as low-level rotation diagnostics (e.g., 0-2 km AGL 
updraft helicity) for which recent research suggests the 1-km grid-spacing runs can provide improved 
tornado guidance.   
 
3D-RTMA Background: Three hourly versions of the 3D-RTMA will be compared to assess the role that 
the background first-guess plays on the final analysis.  3DRTMA prototype 1 (3DRTMAp1) uses RRFSp1 1 
h forecasts as background and the GDAS global ensemble for the background error covariances in the 
3DEnVAR assimilation.  3DRTMA prototype 2 (3DRTMAp2) uses RRFSp2 1 h forecasts as the background 
and RRFSp2e for the background error covariances in the 3DEnVAR assimilation. Finally, 3DRTMA HRRR 
Baseline uses hourly 3-km analyses that rely on operational HRRR 1 h forecasts as the background and 
the GDAS global ensemble for the background error covariances in the 3DEnVAR assimilation.   
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To ensure consistent post-processing, visualization, and verification, post-processing is standardized 
as much as possible, so that a consistent set of model output fields are output on the same grid.  For the 
2022 CLUE, all groups output fields to the 3-km CONUS grid used for the operational HRRRv4.  For both 
WRF-ARW and FV3-LAM, the Unified Post-Processor software (UPP; available at 
http://www.dtcenter.org/upp/users/downloads/index.php) is used and a minimum set of 49 output 
fields is provided at hourly intervals.  This list of mandatory CLUE fields is provided in Appendix C and 
includes fields that are relevant to a broad range of forecast needs, including aviation, severe weather, 
and precipitation.   
 
b) High Resolution Ensemble Forecast (HREFv3) System 
 
 HREFv3 is a 10-member CAM ensemble that was implemented 11 May 2021.  HREFv3 replaced 
HREFv2.1.  The design of HREFv3 originated from the SSEO, which demonstrated skill for six years in the 
HWT and SPC prior to operational implementation as the HREF in 2017.  In HREFv3, the HRW NMMB 
simulations have been replaced with HRW FV3 and HRRRv3 has been upgraded to HRRRv4.    
 
Table 13 Model specifications for HREFv3.   

HREFv3 ICs LBCs Microphysics PBL dx (km) Vertical Levels HREF hours 
HRRRv4 HRRRDAS RAP -1h Thompson MYNN 3.0 50 0 – 48 
HRRRv4 -6h HRRRDAS RAP -1h Thompson MYNN 3.0 50 0 – 42 
HRW ARW RAP GFS -6h WSM6 YSU 3.2 50 0 – 48 
HRW ARW -12h RAP GFS -6h WSM6 YSU 3.2 50 0 – 36 
HRW FV3 GFS GFS -6h GFDL EDMF 3 50 0 – 60 
HRW FV3 -12h GFS GFS-6h GFDL EDMF 3 50 0 – 48 
HRW NSSL NAM NAM -6h WSM6 MYJ 3.2 40 0 – 48 
HRW NSSL -12h NAM NAM -6h WSM6 MYJ 3.2 40 0 – 36 
NAM CONUS Nest NAM NAM Ferrier-Aligo MYJ 3.0 60 0 – 60 
NAM CONUS Nest -12h NAM NAM Ferrier-Aligo MYJ 3.0 60 0 – 48  

 
c) NSSL cloud-based Warn-on-Forecast Experiments 
  

Cloud-based Warn-on-Forecast (cb-WoFS) is the next WoFS iteration, upgraded to use current 
technologies in containerization and cloud computing. The entire WoFS application was rebuilt on top 
of multiple Platform-as-a-Service and Infrastucture-as-a-Service technologies on the Azure platform and 
the WRF model itself rebuilt to run in containers optimized for HPC. With the new cb-WoFS interface, 
administrators can easily configure the domain and dynamically create an HPC infrastructure for the run, 
and upon completion, tear it down, thereby reducing costs by only paying for used resources. Another 
benefit is that as Azure continues to add new, updated computer core types from chip manufacturers, 
these options are passed down to Azure customers, giving cb-WoFS operators the choice of running on 
the latest technologies. All parts of WoFS have been rebuilt for scalability: the containerized WRF can be 
executed on any node, the post-processing is built on high performance queues and containerized, so 
any number of post-processing jobs can run concurrently.   

The cb-WoFS is a rapidly-updating 36-member, 3-km grid-spacing WRF-based ensemble data 
assimilation and forecast system. The cb-WoFS forecasts are initialized every 30 minutes and used to 
produce very short-range (0-6/0-3 h at top/bottom of the hour) probabilistic forecasts of individual 
thunderstorms and their associated hazardous weather phenomena such as supercell hail, high winds, 
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flash flooding, and supercell thunderstorm rotation.  The 900-km x 900-km daily cb-WoFS domain will 
target the primary region where severe weather is anticipated. 

The starting point for each day’s experiment will be the High-Resolution Rapid Refresh Data 
Assimilation System (HRRRDAS) and the 1200 UTC HRRR forecast provided by NCO/GSL. A 1-h forecast 
from the 1400 UTC, 36-member, hourly-cycled HRRRDAS analysis provides the ICs for cb-WoFS.  
Boundary conditions are perturbed HRRR forecasts, where perturbations from the 0600 UTC GEFS are 
added to the the 1200 UTC HRRR forecasts.  The GEFS perturbations are scaled such that the ensemble 
spread at the lateral boundaries is similar to that provided previously by the experimental HRRR 
ensemble.  Table 14 provides a summary of the model specifications for the cb-WoFS, and Figure 1 shows 
an example of a SPC Day 1 convective outlook and corresponding cb-WoFS domain with WSR-88D radars 
used for data assimilation overlaid.  Further details on the cb-WoFS are included below. 

The 36-member cb-WoFS, run from 1500 UTC Day 1 to 0300 UTC Day 2, cycles its data 
assimilation every 15 minutes by GSI-EnKF assimilation of MRMS radar reflectivity and radial velocity 
data, cloud water path retrievals and clear-sky radiances from the GOES-16 imager, and Oklahoma 
Mesonet observations (when available). Conventional (i.e., prepbufr) observations are also assimilated 
at 15 minutes past each hour. All cb-WoFS ensemble members use the NSSL 2-moment microphysics 
parameterization and the RUC land-surface model; however, the PBL and radiation physics options are 
varied amongst the ensemble members to increase ensemble spread, given the fact that the EnKF may 
underrepresent model physics errors. 6-h (3-h) forecasts are initialized and launched from the first 18 
members from the real-time cb-WoFS analyses on each hour (half-hour). The first available forecast is 
launched at 1700 UTC Day 1 and the last at 0300 UTC Day 2.  These forecasts will be viewable using the 
web-based cb-WoFS Forecast Viewer (https://cbwofs.nssl.noaa.gov). 
 
Table 14 cb-WoFS configuration. 

 WoFS 
Model Version WRF-ARW v3.9+ 
Grid Dimensions 300 x 300 x 50 
Grid Resolution 3 km 
EnKF cycling 36-mem. w/ GSI-EnKF every 15 min 
Observations - Prepbufr conventional observations 

- Oklahoma Mesonet (when available) 
- MRMS reflectivity ≥ 15 dBZ; radar ‘zeroes’; radial velocity 
- GOES-16 cloud-water path & clear sky radiances 

Radiation LW/SW Dudhia/RRTM, RRTMG/RRTMG 
Microphysics NSSL 2-moment 
PBL YSU, MYJ, or MYNN 
LSM RUC (Smirnova) 

 

Figure 1 SPC 1630 UTC issued Day 1 convective outlook (left) and corresponding WoFS grid (right). 
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d) Iowa State University (ISU) Machine Learning-based Severe Wind Probabilities (credit: W. Gallus) 
 

Machine-learning-based tools will be used to derive probabilities that thunderstorm wind 
damage reports were truly due to severe intensity winds (50 knots or more).  It is well-known that there 
are deficiencies in the way that estimated wind values are currently assigned to thunderstorm wind 
damage reports.  Roughly 90% of all reports do not have a measured value, and instead are given an 
estimate, with an artificial spike in the frequency of 50 knot (39%) and 52 knot (60 mph; 25%) values. 
The 50 knot estimates often appear for reports involving tree damage, implying that many of these 
reports may be due to winds weaker than severe intensity. 

Several machine learning algorithms were trained on thunderstorm wind damage reports that 
had a measured wind value assigned to them during the 2007-2017 period.  In addition, algorithms were 
re-trained with an independent dataset of sub-severe thunderstorm wind measurements added.  For 
both of these two training approaches, output from two different algorithms will be presented.  One will 
be an ensemble model (average ensemble, stacked generalized linear model, random forest), while the 
other will be the best single model (gradient boosted machine) determined from objective measures in 
ongoing testing.  

The training of these models utilized information from the Storm Report database, including 
textual damage reports, along with SPC mesoanalysis output for 31 weather parameters over a 200 x 
200 km box centered on the storm reports at the nearest hour prior to the report occurrence, population 
density, elevation, and land use data. Probabilities derived from each of these machine learning models 
will be available.  An example is shown in Figure 2.  

 

 
Figure 2 SPC Day 1 probabilities of damaging wind gusts ( ≥ 50 knots) within 40-km of a point (shaded)).  The color of the 

points indicates the ML-based probability that the report was associated with an actual wind gust ≥ 50 knots. Points 
labeled with a star represent station measurements near in time and space to a storm report that did not reach 50kts.  
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e) Texas Tech University RRFS-based Ensemble Subsetting (credit: Brian Ancell) 
 

Ensemble sensitivity is a statistical technique applied within an ensemble that identifies features 
in the flow at early forecast times that are related to the predictability of chosen severe storm 
characteristics later in the forecast. In other words, ensemble sensitivity reveals the flow features for 
which associated errors will grow rapidly to adversely affect the predictive skill of chosen severe storm 
aspects. It can thus be expected that ensemble members that have the least error in the most sensitive 
regions early in a forecast window will provide better forecasts than other members, allowing the 
generation of adjusted and improved probabilities well before the next extended forecast cycle. The goal 
of this SFE 2022 activity is to evaluate ensemble sensitivity-based subsets from a CLUE FV3-based RRFS 
ensemble suite to understand whether the subsetting technique can provide value in a real-time 
environment that includes both initial condition and physics variability. While traditional sensitivity-
based subsetting procedure was designed initially for ensembles based on only initial condition 
variability, here the technique is tested with physics variability under the assumption that early forecast 
differences among physics members relates sufficiently to the evolution of convection to promote 
success. In turn, this evaluation represents the most relaxed set of constraints to date with regard to the 
subsetting technique at the HWT in an effort to discover its broader applicability.  

A daily evaluation of subset probabilities from ensemble subsets against those based on 26 
members that include RRFSp2e, RRFSp2eMP, and RRFSphys will be conducted.  These forecasts are run 
to at least 36 hours and possess both stochastic parameter perturbations and mixed physics schemes. 
The subset will be composed of 6 members chosen from the full set of 26 members. Each day, a response 
function location and time will be chosen through a web-based graphical user interface that identifies 
areas of Day 1 severe convection.  The Day 1 response function will be chosen over a 6-hr period between 
1800 UTC (18-hr forecast) and 1200 UTC (36-hr forecast) in areas where better predictions of severe 
convection are desired (e.g. areas of high uncertainty with regard to convective parameters). Once the 
response time and location are chosen, the sensitivity of a single response function will be calculated: 
the number of grid points exceeding maximum hourly 100 m2/s2 2–5km updraft helicity. These 
sensitivities will be generated completely within the CLUE 20-member RRFS ensemble with respect to 
the 0600 UTC forecast hour (6-hr forecast). Members will then be chosen objectively based on their 
errors in the most sensitive regions using the 0600 UTC 3D-RTMAp2 analysis.  

Probability fields (specifically exceedance probabilities of updraft helicity and simulated 
reflectivity) of Day 1 convection will be generated for the 6-member subset and will be compared against 
the full 20-member ensemble. SPC storm reports and the associated practically perfect probability field 
as well as MRMS data will serve as the observations against which the full and subset RRFS probabilities 
are evaluated. 
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f) Calibrated Forecast Products 
 

i. NCAR HRRR-TL ML-based probabilistic convective mode guidance (credit: Ryan Sobash) 
 
The goal of this evaluation is to subjectively evaluate probabilistic convective mode guidance 

generated from three different machine learning (ML) algorithms, using HRRR forecasts as input. The 
three algorithms include: 1) a supervised ML system that trains a convolutional neural network (CNN) to 
predict the mode of CAM storms using a hand labeled dataset of ~2000 CAM storms, 2) a partially-
supervised CNN system, that is trained using a “proxy” field related to convective mode (i.e., object size 
and updraft helicity) and clustered using a Gaussian mixture model (GMM), and 3) a new feedforward 
neural network (FNN) that predicts mode based on a set of convective storm properties, such as size, 
area, updraft helicity, reflectivity, etc. The CNN and GMM algorithms have been refined based on 
feedback from the 2021 HWT SFE, while the FNN algorithm is new for 2022. 

Storm objects from every hourly HRRR initialization are generated and passed through the three 
ML algorithms to produce the probability that each HRRR storm object can be classified as a supercell, 
quasi-linear convective system, or disorganized mode. Gridded mode probabilities are generated by 
mapping these storm probabilities onto an 80-km grid, with the resulting binary field indicating grid 
boxes where each of the three modes is present at each forecast hour. The binary fields are then 
smoothed to produce a gridded probabilistic hazard guidance product. To improve the reliability of these 
gridded probabilistic prediction, the smoothed probabilistic mode fields are averaged from multiple 
overlapping HRRR initializations to produce a time-lagged HRRR (HRRR-TL) probabilistic convective mode 
guidance product that will be subjectively evaluated. Example HRRR-TL convective mode guidance is 
provided in Figure 3.  
 

 

 
 

 
 

 
 
  
 

 

 

 

 

 

 

 

Figure 3 Example HRRR-TL smoothed neighborhood convective mode guidance using output from the CNN ML model. Contours 
(2, 5, and 10%) indicate the probability of HRRR storm objects being classified as a supercell (red), QLCS (blue), and 
disorganized (green) convective mode. Forecast valid at 18 UTC 20 May 2019. 
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ii. NCAR ML-derived HRRR-based convective hazard probabilities (credit: Ryan Sobash) 
 

As in the 2021 HWT SFE, gridded probabilistic convective hazard guidance is being generated 
with a neural network (NN) over the contiguous United States using the 00 UTC and 12 UTC operational 
HRRR. The 2021 version of the system (version 1; v1) produces probabilistic predictions for six hazards 
and was trained with 42 base diagnostics (Table 15) output from a set of ~300 experimental 00 UTC 
HRRRX forecasts for events between 1 October 2019 and 2 December 2020. The diagnostics are 
upscaled to an 80-km grid and each grid point was labeled as a “hit” if a severe weather report occurred 
within a spatial and temporal neighborhood. Storm reports and output probabilities include the three 
report types, two significant report types, and the occurrence of any storm report. The temporal 
neighborhood for reports was fixed at 2-h, to produce hazard guidance within 4-h windows, while two 
spatial neighborhoods are generated. 

 
Table 15 The 49 base predictors used to train the NNs. The mean of the environmental and upper-air fields, and the maximum 

of the explicit fields, within each 80-km grid box, was used as input into the NNs. Neighborhood predictors were 
constructed by taking larger spatial and temporal means and maximums of the environmental and explicit fields. Fields 
in red were added into the 2022 version (v2) of the system. 

Base Predictor Type Base Predictor Type 
Forecast Hour Static 700 hPa–500 hPa lapse rate Environment 
Day of Year Static Freezing level height Environment 
Local Solar Hour Static Hrly-max 2–5km UH Explicit 
Latitude Static Hrly-max 0–3km UH Explicit 
Longitude Static Hrly-max 2–5km UH (negative) Explicit 
Surface-based CAPE Environment Hrly-max 0–2km UH Explicit 
Most-unstable CAPE Environment Hrly-max 1 km relative vorticity Explicit 
Surface-based CIN Environment Hrly-max updraft speed below 400 hPa Explicit 
Mixed-layer CIN Environment Hrly-max downdraft speed below 400 hPa Explicit 
0–6km bulk wind difference Environment Hrly-max 10-m wind speed Explicit 
Surface-based LCL Environment Hrly-max column-integrated graupel mass Explicit 
0–1km bulk wind difference Environment Hourly precipitation accumulation Explicit 
0–1km storm-relative helicity Environment Hrly-max lightning diagnostic Explicit 
0–3km storm-relative helicity Environment Hrly-max Thompson hail diagnostic Explicit 
2-m temperature Environment 925 hPa, 850 hPa, 700 hPa, and 500 hPa zonal wind Upper-air 
2-m dew point temperature Environment 925 hPa, 850 hPa, 700 hPa, and 500 hPa meridional wind Upper-air 
Surface pressure Environment 925 hPa, 850 hPa, 700 hPa, and 500 hPa temperature Upper-air 
Most-unstable CAPE x 0-6km bulk wind diff. Environment 925 hPa, 850 hPa, 700 hPa, and 500 hPa dew point Upper-air 
Significant tornado parameter Environment   

 
A new version (version 2; v2) of the system is being tested in the 2022 HWT SFE that includes 

the following enhancements: 1) adding an additional year of operational 00 UTC HRRR training data 
from 3 December 2020 through 2 December 2021, 2) the inclusion of seven additional predictors (Table 
15), 3) generating probabilities by averaging the output of 10 different NNs, 4) using a modified NN 
configuration with two layers (instead of one; Table 16), but with fewer neurons per layer, and 5) 
incorporating bug fixes to the pre-processing of certain diagnostics. Evaluations between the 2021 and 
2022 NN systems will be facilitated through HWT-generated comparisons. A web-based visualization 
interface is also available here: https://www2.mmm.ucar.edu/projects/ncar_ensemble/camviewer/. 
An example 4-h all severe hazard forecast from 8 April 2020 is provided in Figure 4. 
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Table 16 Settings used to construct and train the NNs. Settings in parentheses are settings used in the 2022 version (v2) of the 
system. 

 
 
  
 

 

 

 

 

 

 

 
 

 

 

 

 
Figure 4 Neural network based probabilistic hazard forecast for the 4-h period between 00Z- 04Z 9 April 2020 based on a WRF 

forecast initialized at 00 UTC 8 April 2020. Numbers indicate the probability of any severe hazard occurring within 40-km 
of a grid point. Forecast reflectivity objects > 35 dBZ are overlaid. 

 

Neural Network Hyperparameter Value 
Number of hidden layers 1 (2) 
Number of neurons in hidden layer 1024 (16) 
Dropout rate 0.1 (0) 
Learning rate 0.001 
Number of training epochs 10 (30) 
Hidden layer activation function Rectified Linear Unit 
Output layer activation function Sigmoid 
Optimizer Stochastic Gradient Descent 
Loss function Binary Cross-entropy 
Batch size 1024 
Regularization L2 
Batch normalization On 
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iii) NSSL ML Random Forest Hazard Probabilities (credit: Eric Loken) 
 

Automated “first guess” Day 1 (12-36 h lead times; 1200 UTC – 1200 UTC) and Day 2 (24-48 h 
lead times; 1200 UTC – 1200 UTC) hazard probabilities are created from random forests (RFs) trained on 
HREFv3 fields and observed SPC storm reports. Separate RFs predict the probability of tornadoes, severe 
hail, and severe wind. These predictions are made on an 80 km CONUS grid but are bilinearly interpolated 
to the native HREF grid for the SFE. The tornado-, severe hail-, and severe wind-predicting RFs use the 
same set of predictors for a given lead time. These predictors are derived from preprocessed HREFv3 
variables. The procedure for creating the predictors is as follows:  

1. Aggregate HREFv3 fields in time by computing a maximum or minimum over the forecast period.  
2. Upscale the temporally-aggregated fields to an 80 km grid.  
3. Compute the ensemble mean for each field on the 80 km grid.  
4. Spatially smooth the daily maximum 2-5 km updraft helicity (UH2-5km) forecasts from each 

HREFv3 member using a 2-dimensional Gaussian kernel density function with s = 90 km. 
5. The final predictors include ensemble mean temporally-aggregated fields, spatially-smoothed 

individual-member UH2-5km, and 0-1 km relative vorticity from the two HRRR members. 
Predictors are taken from the point of prediction as well as the closest eight additional 80 km grid 
points. Latitude and longitude at the point of prediction are also included. Predictors are 
summarized in Table 17.  

HREFv3 data and observed SPC storm reports from 392 days between March 2021 and April 2022 
are used for training. The overall procedure for creating RFs is similar to that described in Loken et al. 
(2020). Key differences from past SFEs include the removal of most raw environmental field predictors 
(e.g., 2-m temperature) and the addition of: period-minimum storm and index predictors, individual-
member smoothed UH2-5km, skewness of UH2-5km at the time of maximum (or minimum) UH2-5km, 
and 0-1km relative vorticity from the HRRR members.  
Table 17 RF predictor fields, organized by the temporal aggregation strategy. Ensemble summary strategy (e.g., the use of 

an ensemble mean vs. individual members) is reported in parentheses.  
Period Maximum Period Minimum Constant 

2-5 km Updraft Helicity (Ens. mean)  2-5 km Updraft Helicity (Ens. mean)  Latitude 
Upward Vertical Velocity (Ens. mean)   Downward Vertical Velocity (Ens. mean)  Longitude 
0-3 km Storm Relative Helicity (Ens. mean)  0-3 km Storm Relative Helicity (Ens. mean)   
0-1 km Storm Relative Helicity (Ens. mean)  0-1 km Storm Relative Helicity (Ens. mean)   
0-3 km Energy Helicity Index (Ens. mean) 0-3 km Energy Helicity Index (Ens. mean)   
0-1 km Energy Helicity Index (Ens. mean) 0-1 km Energy Helicity Index (Ens. mean)   
1 km AGL Reflectivity (Ens. mean)   
0-3 km Updraft Helicity (Ens. mean)   
10 m Wind Speed (Ens. mean)    
(MUCAPE) x (10 m – 500 hPa wind shear magnitude) (Ens. mean)    
 Supercell Composite Parameter  (Ens. mean)    
Significant Tornado Parameter (Ens. mean)   
Significant Hail Parameter (Ens. mean)    
Smoothed Skewness of UH (2-5 km AGL) within a 39-km square radius 
at time of maximum or minimum UH (Ens. mean)  

  

Smoothed 2-5km Updraft Helicity (Individual members)    
0-1 km Relative Vorticity (HRRR and HRRR time-lagged members)    
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iv. Colorado State University (CSU) GEFS-based, ML-derived Hazard Probabilities (credit: A. Hill) 
 
In the 2022 SFE, the Colorado State University Machine Learning Probabilities (hereafter, CSU-

MLP) prediction system is forecasting severe weather hazards through the application of RFs. The CSU-
MLP RFs are trained with about 9 years of daily 0000 UTC initializations from the FV3 global ensemble 
forecast system reforecast dataset (GEFSv12) along with reports of severe weather. For consistency with 
SPC outlooks as well as SFE activities, RFs are trained separately for individual hazards in the day 1-3 
timeframes, such that separate forecasts are issued for each hazard type (example in Figure 5).  

Predictors from the FV3-GEFS/R correspond to parameters expected to be related to severe 
weather occurrence, including bulk wind shear, convective available potential energy, low-level wind 
and thermodynamics, as well as derived quantities like lifting condensation level; all predictors are listed 
in Table 18. To be consistent across variables and times, all predictors are gridded to a 0.5 degree grid 
for preprocessing. Severe weather reports (i.e., storm data) are similarly gridded over the training 
period, where each point is labeled a 0, 1, or 2 for the occurrence of no severe report, a severe report, 
and a significant severe report. For every gridded event of severe weather across the contiguous United 
States, predictors are selected around the training point with spatiotemporal dimensions to capture any 
pre-existing dynamical model biases from the FV3-GEFS/R, which allows the RFs to learn predictor biases 
during training. Spatially, predictors are gathered within a latitudinal and longitudinal radius (set to 3 in 
these models) around the training point so each grid point represents a separate predictor. Temporally, 
this procedure is followed at each model output time over the forecast window; the new FV3-GEFS/R 
has 3-hourly output through day 10. For example, during the day-1 period, predictors are gathered 3-
hourly from forecast hour 12 through hour 36, totaling nine predictor times. The predictor assembly 
results in approximately 6,500 predictors for each training point in which to build the RFs. 
 

Table 18 Short-hand notation (left) and long description (right) of predictor variables used to train CSU-MLP severe weather 
RFs. Derived variables from FV3-GEFS/R output are denoted with an asterisk (*). 

Predictor Acronym Predictor Description 
APCP 3-hourly accumulated precipitation 
CAPE Convective available potential energy 
CIN Convective inhibition 
U10 10 m latitudinal wind speed 
V10 10 m longitudinal wind speed 
T2M 2 m temperature 
Q2M 2 m specific humidity 
MSLP Mean sea level pressure 
PWAT Precipitable water 
UV10 10 m wind speed 
SRH03 0 - 3km storm relative helicity 
SHEAR850* 0 - 850 hPa bulk wind shear 
SHEAR500* 0 - 500 hPa bulk wind shear 
ZLCL* Height of lifting condensation level 
RH2M* 2 m relative humidity 
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Figure 5 Probabilistic day-3 forecasts of (upper left) tornado, (upper right) hail, and (bottom left) wind hazards valid 1200 - 

1200 UTC ending 23 March 2022. Hatched contours represent a 10% probability of significant severe hazards. 
 
 

v. HREF/SREF, HREF/GEFS, and HREF/HREF Calibrated Severe Weather Probabilities (credit: 
Chris Karstens/Israel Jirak) 

  
Calibrated probabilities for tornadoes, severe hail, and damaging winds valid over a 24-h time 

window corresponding to a convective day (i.e., 1200 – 1200 UTC) are produced for three ensembles 
(i.e., SREF, GEFS, and HREF) using the following procedure.  At every grid-point for the valid forecast 
hour, two probabilities are paired (see Table 19 below):  
 

1. Maximum neighborhood probability of HREF storm attribute variable(s).  For all three 
convective hazards, UH ≥ 75/100/200 m2s-2 for the ARW/NAM Nest/FV3 cores is used over 
all 4-h periods valid within the previous 24-h period.  In addition, severe wind guidance 
considers two additional storm attribute-based fields: the operational HREF Calibrated 
Thunder probabilities and the neighborhood probability of 10- m AGL Wind Speeds ≥ 30 kt, 
which are masked by the aforementioned UH probabilities exceeding 5%. 
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2. Maximum probability of SREF, GEFS, or HREF environmental field(s) meeting a threshold 
over 3-h (SREF/GEFS) or 4-h (HREF) periods valid within the previous 24-h period.  These 
fields include the Significant Tornado Parameter (STP), Most-Unstable CAPE (MUCAPE), and 
Effective Bulk Shear. 

  
Note, the resulting calibrated wind probability field is the maximum of the three approaches 

listed in Table 19.  The historical frequency of a hazard report (or MESH ≥ 29 mm for MESH-Hail 
calibrated hazard probabilities) occurring within 25 miles of that grid point and within the 24-h period 
for that forecast pair of probabilities is substituted as the 24-h calibrated hazard probability.  

The HREF/SREF calibrated severe guidance is the current operational standard.  The HREF/SREF 
version evaluated here has updated calibration, including a higher MUCAPE exceedance threshold.  The 
HREF/GEFS and HREF/HREF versions are evaluated for comparison to examine the impact of the 
ensemble contributing the environmental information.  This is especially relevant as the SREF is 
scheduled for retirement in a couple of years.  
 
Table 19 Environmental fields for each hazard used in the HREF/SREF, HREF/GEFS, and HREF/HREF calibrated probabilities. 

Hazard HREF Storm-Attribute Variables SREF/GEFS/HREF Environmental 
Variables 

Tornado Updraft Helicity ≥ Model/Core Threshold STP ≥ 1 

Hail Updraft Helicity ≥ Model/Core Threshold MUCAPE ≥ 1000 J/kg, Eff. Shear ≥ 20 kt 

Wind (Max of 3 
approaches) 

1. Updraft Helicity ≥ Model/Core Threshold 
2. Calibrated Thunder (UH ≥ 5% mask) 
3. 10 m AGL Wind ≥ 30 kt (UH ≥ 5% mask) 

1. MUCAPE ≥ 1000 J/kg, Eff. Shear ≥ 20 kt 
2. MUCAPE ≥ 250 J/kg, Eff. Shear ≥ 20 kt  
3. MUCAPE ≥ 1000 J/kg, Eff. Shear ≥ 20 kt  

 
 
 vi. STP-based tornado probabilities (STP Cal Circle; credit: Burkely Gallo) 
 
 Calibrated tornado probabilities valid over 24 h periods valid for 1200 – 1200 UTC on Day 1 and 
Day 2 are produced using the following procedure:  A distribution of the significant tornado parameter 
(STP) is formed for each grid point from points where UH in the following hour exceeds the 99.985th 
percentile (within each HREF member's climatology) within a 40 km radius. The 10th percentile of STP 
from that distribution is then assigned to each point at each hour, and then the maximum daily STP value 
for each point is used to assign a probability based on the climatological frequency of a tornado given a 
right-moving supercell and an STP value for each ensemble member. The mean probability at each point 
is taken across the members, and then a Gaussian smoother with σ = 50 km is applied.  For further 
details, see Gallo et al. (2018). 
 
 vii. STP-based tornado probabilities (STP Cal Inflow; credit: David Jahn)  
 
 This alternative approach for deriving 24-h tornado probabilities follows the STP Cal Circle 
methodology except uses the 50th percentile of the STP distribution that is formulated from points 
within the inflow region relative to a point, rather than over the surrounding 40-km circular region.   The 
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inflow area is defined as a quadrant region of 40-km radius that is centrally oriented along the direction 
of the environmental wind at 1 km AGL. 
 

viii.  STP-based tornado probabilities (STP Cal MCS-TF; credit: David Jahn) 
 

This method is similar to the STP Cal Inflow method, except tornado probabilities are calculated 
based on tornado frequency vs. STP curves that are specifically tailored for mesoscale convective 
systems (MCSs) at grid points for which an MCS is identified.   For all other grid points where UH exceeds 
the 99.985 percentile of climatology (indication of a rotating storm) the same tornado frequency vs. STP 
curve is used as with the Inflow method to calculate tornado probability (Jahn et al. 2020, Thompson et 
al. 2017).   Storm mode, either MCS or supercell, is determined objectively at a grid point using pre-
determined thresholds of either the skewness or standard deviation of the UH distribution within a 40-
km radius (Jahn et al. 2022).  
 
 ix. Machine-Learning calibrated WoFS probabilities (credit: Monte Flora) 
 

A series of ML models are being developed to provide rapidly updating probabilistic guidance to 
human forecasters for short-term (e.g., 0-4 h) severe weather forecasts. We generated the feature 
inputs into the ML models from 18-member WoFS forecasts. Rather than producing a gridded ML 
product as with next-day (i.e., 12-36 h lead times) CAM products (e.g., Burke et al. 2019; Loken et al. 
2020; Sobash et al. 2020; Hill et al. 2020), the current method produces object-based predictions that 
are interpreted in an event-based framework—What is the likelihood that a given storm will produce a 
hazard within a 30 minute time window—as opposed to spatial probabilities (what is the likelihood of a 
hazard occurring within some prescribed distance of a point?; Fig. 1). The objects in this case are 
ensemble storm tracks which—conceptually—are regions bounded by the ensemble forecast 
uncertainty in storm location (determined by 30-min updraft tracks). An ensemble storm track can be 
composed of a single ensemble member’s storm track or some combination of up to all 18 ensemble 
members. We trained random forests, gradient-boosted trees, and logistic regression algorithms to 
predict which WoFS 30-min ensemble storm tracks will overlap a tornado, severe hail, and/or severe 
wind report.  
 

 
Figure 7 Illustration of the distinction between event and spatial probabilities (Fig. 2 of Flora et al. 2019). 



 

 
22 

The feature inputs were based on intra-storm and environmental variables from the WoFS and 
morphological variables describing the storm objects (Table 20).   
 
Table 20 Input variables from the WoFS. The asterisk (*) refers to negatively oriented variables. Values in the parentheses 

indicate those variables that are extracted from different vertical levels or layers.  

 
 

From these variables, we computed ensemble statistics as input features (more details in Flora 
et al. 2021). We show an example severe wind forecast from the logistic regression model in Fig. 8.  Each 
object is a composite of ensemble member forecast tracks of a storm, colored according to the 
probability of a severe wind report will occur within the region. For example, this guidance suggests that 
multiple cells within the MCS in Southern MS and AL have 40-60% chance of producing severe wind in 
the next hour.  

 
Figure 8 Example forecast from the severe-wind-based logistic regression. Number overlays indicate the probability of a severe 

wind within that region.  
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The product shown in Figure 8 is available every 5 min up to a lead time of 4 hrs. Due to chaotic 
evolution of thunderstorms, we also provide 1-hourly and 3-hourly summary products (Fig. 9). For 
example, in Figure 9, we compute the maximum tornado probability over the next hour. The guidance 
suggests a high tornado likelihood for the supercell in W TN and for the portion of the MCS over central 
MS, with a modest likelihood in southern MS.  

 

 
Figure 9 Example forecast of maximum tornado probability over the next hour. 

 
 x. Nadocast, HREF/SREF ML-based tornado probabilities (credit: Brian Hempel) 
 

Nadocast is a machine learning system, initially focused on tornadoes, that aims to produce 
timely, calibrated, severe weather probabilities on the Day 1 time scale (2-35 hours). Probabilities are 
generated by gradient-boosted decision trees trained on 10,000+ storm and storm-adjacent hours of 
HREF and SREF outputs. Nadocast performs extensive feature engineering: each grid point from the 
HREF (or SREF) hourly output is supplemented by adding spatial blurs of various radii, spatial gradients, 
parameters from 1 h future and 1 h past, summary statistics over a 3 h window, and additional 
information such as climatology and an estimate of recent convective forcing. To provide rotational 
invariance, winds at each grid point are rotated relative to an estimate of the 500m-5000m shear vector. 
The result is over 10,000 features per grid point per hour, upon which the decision trees operate to 
produce hourly probabilities. To capture uncertainty at longer lead times, different models are trained 
for short- (2-13hr), medium- (13-24hr), and longer-range (24-35hr) forecasts. Hourly probabilities are 
pooled into day-long guidance on a 15km grid and rescaled to follow the historical characteristics of SPC 
thresholds. A preliminary objective comparison (n=260 days) suggests tornado-prediction performance 
that, on average, matches or slightly exceeds SPC 6Z Day 1 guidance. Evaluation in the SFE should shed 
light on Nadocast's subjective characteristics. 
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xi. Flow-dependent training of RF models for convective-outlook guidance (credit: A. Johnson)  
 
 Forecast errors, biases, and relationships between predictors and severe weather hazards can 
depend on the large-scale flow pattern, even within a given season.  However, RF models do not 
inherently account for spatial patterns in the input predictors.  Since the large-scale flow pattern, in 
general, can be forecast with high confidence at more than one-day lead time there may be 
opportunities to leverage such information that is known prior to consulting convection-allowing model 
guidance in the approach to training RF models used for Day 1 convective outlook guidance.  For the 
2022 SFE, OU MAP has implemented three sets of RF-based convective outlook guidance products in 
the post-processing of our FV3-based ensemble that uses VTS approaches with both conventional and 
radar data (MAP-VTS-bot).  The convective outlook guidance includes probabilistic forecasts for severe 
wind, hail and tornado during the 24-hour period from 12 UTC to 12 UTC on Day 1.  The first set of RF-
based products (MAP_RF) are generated using a baseline configuration where predictors are 
interpolated onto an 80-km grid and trained over approximately 80 retrospective forecasts.  The second 
set of RF-based products (MAP_RF_FD) includes flow-dependent training where the RF model that is 
applied on a given day is trained only on the subset of retrospective cases with a “similar” large scale 
flow pattern, where the similarity of the large-scale flow pattern is determined as described below.  The 
third set of RF-based products (MAP_RF_MS) uses multi-scale predictors that includes the same 
predictors as MAP_RF, in addition to the same predictors smoothed over progressively larger circles 
with radii of 160, 320 and 800 km in order to implicitly account for characteristics of the larger scale 
flow. 

For the explicitly flow-dependent RF training (MAP_RF_FD), permutation feature importance 
(PFI; Mecikalski et al. 2021) was used to identify the importance of each predictor overall, and on 
individual cases.  PFI is the increase in Brier score error resulting from shuffling values of a given predictor 
on a given case, and it is here normalized by dividing by the error increase from the most important 
predictor on that case. Principal Component Analysis is then used to identify the leading modes of 
variability across the domain among the training cases for several forecast variables.  For example, for 
severe wind prediction the normalized PFI of the 850 hPa U-component of wind predictor tends to be 
lower on cases that project negatively on the leading mode of variability for 850 hPa U-component of 
wind (Figure 10). Since the leading mode of variability for 850 hPa U-wind corresponds to large-scale 
anomalously strong westerly flow, this suggests that u850 does not provide the RF model much 
additional discrimination of localized severe wind threat in cases with weak large-scale westerly low-
level flow. We thus hypothesize that for cases that project onto u850 PC 1 with a value below about -25 
(see Figure 10), we can give the RF a head start on learning the relevant relationships among predictors 
for this case by only training on cases that also have a strongly negative projection onto u850 PC 1.  This 
approach will be compared to the baseline approach and the approach of implicitly providing 
information about the large-scale flow pattern using multi-scale predictors during 2022 HWT SFE. 
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Figure 10 The top panel shows the leading principal component of 850 hPa u-wind (u850) at forecast hour 24 in the MAP 

forecasts from 2021 HWT, calculated by first recentering the u850 field based on that case’s verification domain selected 
during the 2021 HWT SFE. The bottom panel shows a scatter plot of normalized u850 PFI  vs. the projection for that case 
of the 24-hr u850 forecast onto the leading mode of u850 variability. 
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Table 21 Different classes of predictors used in the RF model. Storm environment, and “other”, predictors are averaged over 
each 80-km grid box while storm attribute predictors are the 80-km grid box maximum. 

 
Storm 
attributes 

 Storm 
environment 

 Other   

Maxuh25 Hourly maximum 
updraft helicity 
(UH) in 2-5 km layer 

sbcape Surface-based CAPE Lat Latitude  

Maxuh03 Hourly maximum 
UH in 0-3 km layer 

mucape CAPE of must unstable parcel 
in lowest 255mb 

lon Longitude  

Maxdbz10c Hourly maximum 
reflectivity at 10 C 
level 

sbcin Surface-based CIN   

hrprecip Hourly 
accumulated 
precipitation 

mucin CIN of must unstable parcel in 
lowest 255mb 

  

  sblcl LCL of surface parcel   
  u250, u500, u850 u-component of wind at 250, 

500 and 700 hPa 
  

  v250, v500, v850 v-component of wind at 250, 
500 and 700 hPa 

  

  tmp500, tmp700, 
tmp850 

Temperature at 500, 700 and 
850 hPa 

  

  dew700, dew850 Dewpoint at 700 and 500 hPa   
  t2m, dew2m Temperature and dewpoint at 

2m AGL 
  

  hgt500 12-hour change in height at 
500 hPa 

  

  hlcy1km, 
hlcy3km 

Storm relative helicity in 0-1 
and 0-3 km layers 

  

  pw Precipitable water   
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3. SFE 2022 Core Interests and Daily Activities 
 
 2022 SFE activities will occur from 9am-4pm CDT, with a lunch break from 12:30-2pm CDT.  On 
Wednesdays there will be an optional science brown bag over a part of the lunch break. Tables 22 and 
23 provide a schedule for Monday, and Tuesday-Friday, respectively. Further details are provided in 
subsequent sections. 
 
Table 22 Schedule for Monday.  

Time (CDT) R2O Group Innovation Group 
9:00 AM – 
9:45 AM  

Welcome and Introductions 
Israel Jirak & Participants 

9:45 AM – 
10:30 AM 

HWT SFE Scientific Objectives and Goals 
Israel Jirak & Adam Clark 

10:30 AM - 
11:00 AM 

Break 
Fill out IRB Consent Form 

11:00 AM - 
11:15 AM 

Conditional Intensity Forecasting Overview 
Israel Jirak 

11:15 AM – 
11:30 AM 

Weather Briefing 
David Imy 

11:30 AM – 
12:30 PM 

Issue Day 1 Hazards Coverage and Conditional 
Intensity Forecasts (2 groups)  

Issue Day 2 and Day 3 Hazards Coverage 
and Conditional Intensity Forecasts  

No Cal. Guidance Cal. Guidance Day 2 Day 3 
12:30 PM – 
2:00 PM 

Lunch/Break 

2:00 PM – 
2:15 PM 

Update on Today’s Weather 
David Imy 

2:15 PM – 
3:15 PM 

Issue MD Product Issue 1-h outlooks (21-22, 22-23Z) 
WoFS & obs WoFS ML WoFS No ML 

3:15 PM – 
4:00 PM 

Update Day 1 
Outlook 

Focus Group Activity Issue 1-h outlooks (21-22, 22-23), End-of-
Day WoFS ML Survey 

WoFS & other 
guidance 

Conditional Intensity 
Discussion 

WoFS ML WoFS No ML  
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Table 23 Schedule for Tuesday – Friday. 

Time (CDT) R2O Group Innovation Group 
9:00 AM – 
9:15 AM  

Overview of Yesterday’s Severe Weather 
David Imy 

9:15 AM – 
11:00 AM 

Evaluation Orientation, Individual Working Time, and Discussion 

Group A: Calibrated 
Guidance 

Group B: 
Deterministic CAMs 

Group C: CAM Ensembles Group D: Medley 

11:00 AM - 
11:15 AM 

Break  

11:15 AM – 
11:30 AM 

Weather Briefing 
David Imy 

11:30 AM – 
12:30 PM 

Issue Day 1 Hazards Coverage and 
Conditional Intensity Forecasts (2 groups)  

Issue Day 2 and Day 3 Hazards Coverage and 
Conditional Intensity Forecasts (2 groups) 

No Cal. Guidance Cal. Guidance Day 2  Day 3 
12:30 PM – 
2:00 PM 

Lunch/Break (Wed., Fri.) 
Lunch/Science Brown Bag (Tues., Thurs.) 

2:00 PM – 
2:15 PM 

Update on Today’s Weather 
David Imy 

2:15 PM – 
3:00 PM 

Issue MD Product Issue 1-h outlooks (21-22, 22-23Z) 
WoFS & obs WoFS ML WoFS No ML 

3:00 PM – 
4:00 PM 

Update Day 1 
Outlook 

Focus Group Activity Issue 1-h outlooks (21-22, 22-23Z), End-of-
Day WoFS ML Survey 

WoFS & other 
guidance 

Conditional Intensity 
Discussion 

WoFS ML WoFS No ML 

 
a. Formal Evaluation Activities 
 
 SFE 2022 will feature one period of formal evaluation from 9:15-11:00am CDT Tuesday-Friday.    
The evaluations will be done virtually and involve comparisons of different ensemble diagnostics, CLUE 
ensemble subsets, HREF, WoFS, and other products and guidance.  Additionally, the evaluations of 
yesterday’s experimental forecast products will be conducted during this time.  Participants will be split 
into Groups A, B, C, & D, which will each conduct a separate set of evaluations.  In each group, from 
9:15-9:25am CDT (on Tuesdays and Thursdays when participants join a new evaluation group), a short 
tutorial will be presented to instruct and familiarize participants with the evaluations in their respective 
groups, and then from 9:25-10:15am CDT, participants will conduct the evaluations independently while 
facilitators remain available for questions.  Finally, from 10:15-10:45am CDT, each group will reconvene 
in a virtual meeting to discuss various aspects of the just-completed evaluations (e.g., interesting 
observations, notable differences in performance, etc.), and from 10:45-11am CDT the evaluations of 
yesterday’s forecasts will be discussed.  The four different sets of evaluations are summarized below: 
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Group A – Calibrated Guidance 
 
A1. Calibrated Guidance 
 
 a. GEFS Tornado Guidance 
 
 Tornado probabilities for Days 1-3 from the CSU-MLP prediction system are subjectively rated.   
 
 b. Day 2 12Z HREF Calibrated Tornado Guidance  
 
 Four different methods based on HREF for deriving calibrated Day 2 tornado guidance are 
subjectively rated. These methods include: (1) HREF/GEFS Cal, (2) STP Cal Circle, (3) ML Random Forest, 
and (4) STP Cal MCS-TF.  
 
 c. Day 1 00Z HREF Calibrated Tornado Guidance 
 
 The same methods as in the Day 2 evaluation are rated for Day 1, with the addition of Nadocast. 
  
 d. HREF Tornado Guidance: Convective Mode 
 
 STP Circle and STP Cal MCS-TF are subjectively evaluated relative to STP Inflow for Day 1 tornado 
guidance.  Note, the ratings for STP Cal MCS-TF and STP Cal Circle are carried over from the previous 
evaluation.   
 
 e. HREF Tornado Guidance: Environment 
 
 Four different methods for tornado guidance based on a combination of HREF and different 
sources of environmental information are subjectively rated.  These methods include: (1) HREF/SREF 
Ops, (2) HREF/SREF Para, (3) HREF/GEFS Cal, and (4) HREF/HREF Cal.   
 
 f. OU-MAP Flow-Dependent Tornado Guidance 
 
 RF models for Day 1 tornado predictions contributed by the OU-MAP group are subjective 
evaluated.  These include models that are non-flow dependent (MAP_RF), explicitly flow dependent 
(MAP_RF_FD), and implicitly flow dependent (MAP_RF_MS).   
 
 g. GEFS Hail Guidance 
 
 Hail probabilities for Days 1-3 from the CSU-MLP prediction system are subjectively rated.   
 
 h. Days 1 & 2 12Z HREF Calibrated Hail Guidance 
 
 Hail probabilities based on HREF for Days 1 & 2 from HREF/GEFS Cal and ML Random Forest are 
subjective evaluated.     
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 i. HREF Hail Guidance: Environment 
 

Four different methods for hail guidance based on a combination of HREF and different sources 
of environmental information are subjectively rated.  These methods include: (1) HREF/SREF Ops, (2) 
HREF/SREF Para, (3) HREF/GEFS Cal, and (4) HREF/HREF Cal.  Note, the ratings for HREF/GEFS Cal are 
carried over from the previous evaluation.   

 
j. HREF Hail Guidance: MESH 
 
HREF/GEFS MESH is subjectively evaluated relative to HREF/GEFS Cal.  HREF/GEFS MESH is 

formulated the same as HREF/GEFS Cal, except MESH is used for calibration rather than severe hail 
reports.  Note, the ratings for HREF/GEFS Cal are carried over from the previous evaluation.   
  
 k. OU-MAP Flow-Dependent Hail Guidance 
 
 RF models for Day 1 hail predictions contributed by the OU-MAP group are subjective evaluated.  
These include models that are non-flow dependent (MAP_RF), explicitly flow dependent (MAP_RF_FD), 
and implicitly flow dependent (MAP_RF_MS).   
 
 l. GEFS Wind Guidance 
 
 Wind probabilities for Days 1-3 from the CSU-MLP prediction system are subjectively rated.   
 
 m. Days 1 & 2 12Z HREF Calibrated Wind Guidance 
 

Wind probabilities based on HREF for Days 1 & 2 from HREF/GEFS Cal and ML Random Forest 
are subjective evaluated.    

 
n. HREF Wind Guidance: Environment 
 
Four different methods for wind guidance based on a combination of HREF and different sources 

of environmental information are subjectively rated.  These methods include: (1) HREF/SREF Ops, (2) 
HREF/SREF Para, (3) HREF/GEFS Cal, and (4) HREF/HREF Cal.  Note, the ratings from HREF/GEFS Cal are 
carried over from the previous evaluation.   

 
o. OU-MAP Flow-Dependent Wind Guidance 
 
RF models for Day 1 wind predictions contributed by the OU-MAP group are subjective 

evaluated.  These include models that are non-flow dependent (MAP_RF), explicitly flow dependent 
(MAP_RF_FD), and implicitly flow dependent (MAP_RF_MS).   

 
p. 00Z HRRR NCAR NN Tor/Hail/Wind Guidance 
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Day 1 Tornado, Hail, and Wind predictions from last year's version (v1) of the NCAR NN hazard 
probabilities are compared to a new version (v2) that includes several enhancements. 

 
Primary Science Question: What are the strengths and weaknesses of the various calibrated hazard 
guidance, and what are the best approaches and techniques to develop calibrated hazard probabilities? 

 
Group B – Deterministic CAMs 
 
B1. CLUE: Deterministic Flagships 
 

This activity will focus on ranking the primary deterministic CAMs provided by several SFE 
collaborators – GFDL (GFDL-FV3), NSSL (NSSL-FV3-LAM), and EMC/GSL (RRFSp1 and RRFSp2) – based on 
their skill and utility for severe weather forecasting. These runs will be compared to the operational 
HRRRv4, which was developed by GSL.   Particular attention will be given to simulated storm structure, 
convective evolution, and location/coverage of storms. Storm surrogate fields, like hourly maximum 
updraft helicity, will also be examined to gauge their utility for forecasting severe storms.    

 
Primary Science Question: How do the deterministic CAM runs using the FV3 dynamic core compare to 
the operational standard for convective forecasting (i.e., WRF-ARW-based HRRRv4)? 
 
B2. CLUE: RRFS vs. HRRR 
 
 This activity will feature a "deeper dive" into storm attribute and environmental fields in HRRRv4 
and RRFSp2.  These comparisons will serve to unearth ways in which the currently operational CAM (the 
HRRRv4) differs from a candidate to replace it (the RRFSp2), and whether the RRFSp2 improves upon or 
degrades forecasts of the HRRRv4 for fields relevant to forecasting severe weather. A greater number 
of fields will be available for this comparison relative to other comparisons, allowing for participants to 
examine more facets of the guidance and identify potential contributions to severe convective hazard 
forecast success or failure.  
 
Primary Science Questions: How do forecasts of the RRFSp2 compare to those of the HRRRv4? Are there 
systematic shortcomings or advantages of the RRFSp2? 
 
B3. CLUE: Data Assimilation 
 
 Five deterministic model configurations are examined in the first 12 hours of the forecast period 
that incorporate different data assimilation strategies: (1) HRRRv4, (2) RRFSp1, (3) RRFSp2, (4) MAP-
VTS-rad Control, and (5) MAP-VTS-bot Control.   
 
Primary Science Question: What are the optimal data assimilation strategies in FV3-LAM configurations 
for short-term convective weather forecasting? 
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B4. CLUE: FV3 Physics Suites 
 
 The RRFSphys ensemble contains five different physics suites.  Since each suite uses the same 
set of ICs/LBCs, this allows a controlled comparison in which we can evaluate the impact of the 
differences in physics.  For the microphysics/PBL/LSM schemes, these members use (1) 
Thompson/MYNN/NOAH, (2) NSSL/MYNN/NOAH, (3) Thompson/MYNN/NOAH-MP, (4) NSSL/TKE-
EDMF/RUC, and (5) Thompson/TKE-EDMF/NOAH-MP. Particular attention will be given to simulated 
storm structure, convective evolution, and location/coverage of storms.  Storm surrogate fields, like 
hourly maximum updraft helicity, will also be examined to gauge their utility for forecasting severe 
storms. 
 
Primary Science Question: What is the optimal physics package in FV3-LAM for convective weather 
forecasting? 
 
B5. 1-km vs. 3-km  
 
 This comparison will focus on comparing the NSSL3 and NSSL1 configurations of WRF-ARW, 
which have 3- and 1-km grid-spacing, respectively.  Particular attention will be given to unique storm 
attribute fields such as 0-1 km AGL UH and 0-2 km AGL maximum wind.  It is hypothesized that for these 
fields, the enhanced resolution of NSSL1 will provide improved guidance for hazards like tornadoes, 
whose parent mesocyclones and associated low-level rotation are better resolved using 1-km grid-
spacing, and wind, which is better resolved at higher resolutions.   
 
Primary Science Question: Does increasing horizontal grid-spacing from 3- to 1-km provide benefits 
when utilizing storm diagnostics that reflect the intensity of low-level rotation important for tornado 
prediction and the strength of convective wind gusts?   
 
Group C – CAM Ensembles 
 
C1. CLUE: 00Z CAM Ensembles 
 
 This evaluation will compare three 00Z initialized, FV3-LAM CAM ensembles to HREFv3.  
Specifically, (1) RRFSp2e, (2) MAP-VTS-rad, and (3) RRFSp2eMP will be compared. Each of these datasets 
has a unique configuration strategy, so the primary goal is to find which strategy is optimal and how it 
performs relative to HREFv3.   
 
Primary Science Question: What are the best ensemble configuration strategies (e.g., DA and physics) 
for FV3-LAM based CAM ensembles, and how do they compare to HREFv3? 
 
C2. CLUE: RRFSp2e vs. HREF 
 
 This evaluation will feature an in-depth examination of several storm attribute and environment 
fields from 00Z and 12Z initialized versions of RRFSp2e and HREFv3.  These comparisons will serve to 
unearth ways in which the currently operational CAM ensemble (the HREF) differs from a candidate to 
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replace it (the RRFSp2e), and whether the RRFSp2e improves upon or degrades forecasts of the HREF 
for fields relevant to forecasting severe weather. A greater number of fields will be available for this 
comparison relative to other comparisons, allowing for participants to examine more facets of the 
guidance and identify potential contributions to severe convective hazard forecast success or 
failure. This comparison will also mark the first time that CAM ensemble environments will be compared 
during a next-day evaluation within the SFE 
 
Primary Science Question: How do probabilistic forecasts of the RRFSp2e compare to those of the HREFv3 
(e.g., spread and skill)? Are there systematic shortcomings or advantages of the RRFSp2e?  
 
C3. CLUE: Data Assimilation  
 
 This evaluation will focus on the first 12 h of 00Z-initialized forecasts from three CAM ensembles 
that employ different data assimilation strategies and compare their forecasts to HREFv3.  Specifically, 
(1) RRFSp2e, (2) MAP-VTS-rad, and (3) MAP-VTS-bot, will be compared.    
 
Primary Science Question: Does valid-time-shifting (VTS) improve upon forecasts without VTS, and does 
incorporating both radar and conventional observation into VTS improve upon forecasts that only 
incorporate radar data in the VTS algorithm?   
 
C4. CLUE: TTU Ensemble Subsetting 
 
 Severe weather probabilities formulated with updraft helicity and reflectivity for a subset of 
RRFSp2e and RRFSp2eMP members will be compared to those from the "full" ensemble of RRFSp2e, 
RRFSp2eMP, and RRFSphys members.  The subset is composed of the members with the smallest errors 
in sensitive regions as determined by ensemble sensitivity analysis.   
 
Primary Science Question: Can a sensitivity-based ensemble subsetting approach lead to improved 
guidance over the full ensemble for severe-weather forecasting? 
 
C5. WoFS: Number of Members 
 
 In this evaluation, UH- and reflectivity-based probabilities and paintball plots from 21Z and 23Z 
WoFS initializations will be compared where the probabilities/paintballs are constructed from all 18 
WoFS members, as well as 9- and 13-member subsets.  
 
Primary Science Question: Is it possible to run WoFS with fewer members and get the same forecast 
quality of hourly probabilistic forecasts?  
 
C6. WoFS: Time Lagging 
 
 In this evaluation, 18-member WoFS guidance will be compared where the 18 members come 
from a single initialization time versus different (i.e., time-lagged) initialization times.  Specifically, one 
set of 18 members will come from 6 members drawn from 19, 20, and 21Z; another set of 18 members 
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will come from 9 members drawn from 20 and 21Z; and the final set of 18 members will all come from 
21Z.  The same exercise will be repeated but for WoFS ensembles based at 23Z.   
 
Primary Science Question: Does a time-lagging strategy benefit WoFS forecasts? 
 
Group D – Medley 
 
D1. ISU ML Severe Wind Probabilities 
 
 An evaluation will be conducted of different techniques to produce ML-based probabilities to 
estimate the likelihood that a damaging wind report was caused by wind ≥ 50 knots.  The evaluations 
will focus on perceived usefulness of the output via comparison with SPC forecasts of severe wind 
probability, best methods to display the information, and subjective evaluation of three different ML 
techniques.  The evaluation will be conducted on an external web page hosted by Iowa State University.  
Additionally, Practically Perfect severe wind probabilities derived from LSRs will be compared to 
Practically Perfect severe wind probabilities where the LSRs have been assigned a probability that they 
were associated with wind ≥ 50 knots. 
 
Primary Science Questions: Can machine-learning approaches provide useful information regarding the 
likelihood of wind damage reports being associated with gusts ≥ 50 knots?  Do Practically Perfect wind 
probabilities utilizing the gusts ≥ 50 knots probabilities have more utility than the standard method used 
to compute the Practically Perfect probabilities?   
 
D2. NCAR ML Mode  
   

This evaluation will assess the utility of ML algorithms trained to provide probabilistic guidance 
of simulated storm mode using CAM model output. Specifically, three trained ML models will be tested: 
1) a supervised ML system that trains a convolutional neural network (CNN) using a hand labeled dataset, 
2) a partially-supervised CNN system, that is trained using a “proxy” field related to convective mode 
(i.e., object size and updraft helicity) and clustered using a Gaussian mixture model (GMM), and 3) a new 
feedforward neural network (FNN) that predicts mode based on a set of convective storm properties, 
such as size, area, updraft helicity, reflectivity, etc.. By using a time-lagged HRRR (HRRR-TL) approach, a 
probabilistic convective mode guidance product for each ML model will be subjectively evaluated.  

 
Primary Science Question: Can machine-learning be used to provide automated probabilistic guidance 
on convective mode, and which machine-learning techniques work best? 
 
D3. Mesoscale Analysis 
 
 a. Background 
 
 Three hourly versions of the 3D-RTMA will be compared to assess the role that the background 
first-guess plays on the final analysis.  Specifically, 3DRTMAp1, 3DRTMAp2, and 3DRTMA HRRR 
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Baseline will be compared. The goal is to assess the utility of these analysis systems for situational 
awareness and short-term forecasting for convective-weather scenarios.  
  
 b. Storm Scale 
 

WoFS-based “analyses” (actually 15-minute maximum forecasts) of 10-m and 80-m wind are 
compared to preliminary local storm reports, including gust measurements and estimates. 
 
Primary Science Question: What are the optimal methods for producing quality mesoscale analyses for 
convective forecasting applications and can a high resolution, rapidly updating ensemble DA system serve 
as a verification source for severe winds?   
 
D4. GEFS vs. SREF 
 
 a. Day 3 
 
 Several sets of environmental parameters (2-m Td, CAPE, shear) and ensemble fields (mean, 
spread, and probabilities), as well as calibrated thunder and severe thunderstorm guidance are 
compared between the GEFS and SREF systems for the Day 3 forecast period.  As NOAA moves toward 
a more unified model production suite, the SREF is planned for retirement, but the GEFS must be able 
to demonstrate forecast skill comparable or better than the SREF prior to retiring the SREF. 
 
 b. Day 2 
 
 This evaluation is the same as for Day 3, but for the Day 2 forecast period.  
 
Primary Science Question: Can the GEFS provide similar or improved forecast quality as the SREF during 
the Day 2 & 3 forecast period for severe weather applications?   
 
D5. County-Based Watch Guidance – "Threats in Motion" (credit: David Harrison) 
 
 An HREF-based ML model has been developed to produce automated, non-static watch products 
that dynamically track with the predicted severe weather threat.  This guidance is derived from a 
gradient boosted classifier trained on HREF ensemble updraft helicity, updraft vertical velocity, 10-m 
wind, and sfc-500 mb shear.  Estimated watch counties are inferred at each 12z HREF forecast hour from 
the ML probabilistic output and masked such that a county must fall within at least a 13z D1 Slight risk 
to qualify for a watch.  Automated watches produced by the ML guidance are designed to provide at 
least 3 hours of lead time prior to the first occurrence of severe weather.   

An alternative automated watch product has also been derived from the SPC Severe Timing 
guidance.  Estimated watch counties are inferred at each forecast hour from the temporally 
disaggregated individual hazard probabilities provided by the 13z Severe Timing guidance and the 12z 
HREF.  A county is considered to be in a watch at a given forecast hour if the timing guidance produces 
individual hazard probabilities equivalent to at least a Slight risk at that location and time.  As with the 
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ML guidance, these automated watches are designed to provide at least 3 hours of lead time prior to 
the first occurrence of severe weather. 

These two approaches for generating county-based watch guidance will be compared and 
evaluated against counties in actual Severe Thunderstorm and Tornado Watches, as well as against 
Severe Thunderstorm and Tornado Warnings and preliminary Local Storm Reports (LSRs). 
 
Primary Science Question: Can ML be used to produce automated, dynamic watch products that 
accurately track the severe weather threat?  How well do these automated watches emulate the 
appearance and utility of human-generated watch products?  Does ML add value over the simpler timing 
guidance approach for providing automated watch guidance? 
 
b. Forecast Products and Activities 
 
 There will be two periods of experimental forecast activities during SFE 2022.  The first will occur 
from 11:30am – 12:30pm CDT and will focus on generating probabilistic outlooks for individual hazards, 
as well as more precise information on the intensity of specific hazards.  As in SFE 2021, we will split the 
participants into four groups: two R2O groups issuing products for Day 1 and two Innovation Groups 
issuing products for Days 2 & 3.  The experimental forecasts will cover a limited-area domain typically 
covering the primary severe threat area with a center-point selected base on existing SPC outlooks 
and/or where interesting convective forecast challenges are expected.  The Day 3 forecast is the only 
exception to the smaller domain, and will instead cover a full CONUS domain. 

In all groups, the morning forecasts will be done collectively.  The individual hazard forecasts will 
mimic the SPC operational Day 1 & 2 Convective Outlooks by producing individual probabilistic coverage 
forecasts of large hail, damaging wind, and tornadoes within 25 miles (40 km) of a point.  The Day 1 
outlooks will cover the period 1800 UTC to 1200 UTC the next day, while the Days 2 & 3 outlooks will 
cover 1200 – 1200 UTC periods.  Additionally, each group will issue conditional intensity forecasts of 
tornado, wind, and hail, in which areas are delineated with reports that are expected to follow a 
“normal”, “hatched”, or “double-hatched” distribution.  These conditional intensity forecasts are similar 
to those issued during SFEs 2019-2021.  When generating Day 1 Convective Outlooks, SPC forecasters 
draw probabilities that represent the chance of each hazard occurring within 25 miles of a point. 
Forecasters can also delineate “hatched” areas, which represent regions with a 10% chance or greater 
of significant severe weather (EF-2 or greater tornadoes, winds ≥ 65 kts, or hail ≥ 2-in.) within 25 miles 
of a point. Research by the SPC has shown that, as the forecast coverage of a hazard increases, the 
expected intensity of the verifying reports also increases. For instance, on days where a “hatched” area 
is drawn and the maximum tornado coverage is 10 or 15%, 17% of the observed tornadoes are 
significant. When a “hatched” area is drawn and the maximum tornado coverage is 30% or higher, 32% 
of observed tornadoes are significant. In other words, as the forecast tornado coverage increases, the 
observed tornadoes grow progressively more intense, regardless of how many tornadoes occur; 
preliminary results show a similar pattern for wind and hail. Therefore, current coverage forecasts 
include intensity information that is not explicitly communicated to users, so coverage forecasts and 
intensity forecasts could be better labeled/communicated. These results have been used to identify four 
conditional intensity probability distributions that can be forecast via examination of the atmospheric 
environment: “no severe”, “normal”, “hatched”, and “double-hatched”. In plain language, “normal” 
refers to a typical severe weather day, where significant severe weather is unlikely, “hatched” areas 
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indicate where significant severe weather is possible, and “double-hatched” areas indicate where high 
impact significant severe weather is expected.   

Within the R2O Group, one sub-group will use all available operational and experimental 
guidance products for issuing their Day 1 individual hazard and conditional intensity forecasts, except 
for calibrated guidance, while another sub-group will use the same sets of guidance, along with the 
calibrated guidance products.  Within the Innovation Group, one sub-group will issue Day 2 forecasts, 
while another sub-group will issue Day 3 forecasts.   

The second period of experimental forecasting activities will occur during the 2-4pm CDT time 
period.  In the R2O group, the 2:15-3pm CDT time period will be devoted to an activity in which each 
participant will create their own Mesoscale Discussion (MD) Product using WoFS and other available 
CAM guidance within the SFE Drawing Tool.  Then, during the 3-4pm time period, the R2O group will be 
split into two sub-groups.  In one sub-group, each R2O group participant will use WoFS and other 
available guidance to update the Day 1 individual hazard coverage and conditional intensity forecasts 
for the period 2100 – 1200 UTC.  In the other sub-group, a focus group activity will be conducted to gain 
insight on the conditional intensity products.  

During the 2:15-4pm CDT time period in the Innovation Group, participants will generate severe 
hazard probabilities valid over 1-h time windows covering 2100-2200 UTC and 2200-2300 UTC.  Initial 
forecasts will be generated during the 2:15-3:15pm period and final forecasts will be generated during 
the 3:15-3:45pm period.  After the final forecasts are issued, from approximately 3:45-4pm, participants 
will complete a survey to gain insight on the use of ML-based forecast products from WoFS.  All of the 
Innovation Group afternoon forecasting activities will be conducted in two sub-groups.  One group will 
have access to calibrated, WoFS-based ML guidance when issuing their forecasts, while the other will 
only use the uncalibrated WoFS products.  For both sets of initial and final forecasts, two forecasters 
will be in the group that includes ML guidance (Forecaster CAL 1 & 2), while two other forecasters will 
be in the group without ML guidance (Forecaster NOCAL 1 & 2).  Additionally, other participants in each 
group will issue forecasts with and without the ML guidance similarly to the expert forecasters, which 
will be combined into consensus forecasts (ConCAL and ConNOCAL, respectively). 

These WoF activities are the sixth year the WoF Ensemble has been tested in the SFE to explore 
the potential utility of WoF products for issuing guidance between the watch and warning time scales 
(i.e. 0.5 to 6-h lead times). These activities explore ways of seamlessly merging probabilistic severe 
weather outlooks with probabilistic severe weather warnings as part of NOAA’s Warn-on-Forecast (WoF; 
Stensrud et al. 2009) and Forecasting a Continuum of Environmental Threats (FACETs; Rothfusz et al. 
2018) initiatives. These efforts also support the transition to higher temporal resolution forecasts at the 
SPC. 
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Appendix A: List of scheduled SFE 2022 participants.   
Week 1 Week 2 Week 3 Week 4 Week 5 
2-6 May 9-13 May 16-20 May 23-27 May 31 May - June 3 

Philippe Papin (NHC) Tom Galarneau (CIWRO) Bill Gallus (ISU) Harald Richter (BoM) Craig Schwartz (NCAR) 
Maria Molina (NCAR) Allie Mazurek (CSU) Manda Chasteen (NCAR) Brice Coffer (NC State) Jordan Dale (WPO) 
Kevin Thiel (CIWRO/SPC) Robin Tamamachi (Purdue) Trudy Kidd (EC-OSPC) Noah Carpenter (OU SOM) Becky Adams-Selin (AER) 
Brad Vrolijk (EC-PASPC) Allison LaFleur (Purdue) Monica Vaswani (EC-OSPC) Clark Evans (UWM) Kelly Hobelman (EC-OSPC) 
Andy Elliott (USAF) Liz Tirone (ISU) Heather Pimiskern (EC-PASPC) Russ Schumacher (CSU) Katrina Eyk (EC-OSPC) 

Kelton Halbert (U. Wisc) Leigh Orf (U. Wisc) Jamie Foote (USAF) 
Georgina Da costa Barradas (EC-
QSPC) Sherry Williams (EC-OSPC) 

Victor Gensini (NIU) Aaron Hill (CSU) Andrew Winters (U. Colorado) Kristin Corbosiero (U. of Albany) 
Eric Van Lochem (EC-
PASPC) 

Keenan Eure (PSU) Allie Brannan (CIWRO/SPC) 
McKenzie Larson (U. 
Colorado) Jen Henderson (TTU) Nick Goldacker (NC State) 

Will Mayfield (DTC) Michelle Harold (DTC) Casey Davenport (UNCC) Roldolfo Hernandez (TTU) Felicia Guarriello (WPO) 
Ryan Sobash (NCAR) Justin Spotts (TAMU) Roger Riggin (UNCC) Dave Ahijevych (NCAR) Camille Hoover (USAF) 
Geeta Nain (Purdue) Charlie Becker (NCAR) Kelly Lombardo (PSU) Matthew Vaughan (St. Cloud) Rob Hepper (AWC) 

John Allen (CMU) 
Marion Mittermaier (UK 
Met) 

Alexandra Anderson-Frye 
(UW) Tatiana Gonzalez (NWS AFS) David Gagne (NCAR) 

Dan Harris (UK Met) Chris Smallcomb (NWS REV) Zhanxiang Hua (UW) Carlo Cafaro (UK Met) Eric Guillot (NWS AFS) 
Ka Yee Wong (GSL) Steve Willington (UK Met) Stephanie Avey (NWS AFS) Aurore Porson (UK Met) Brian Tang (Albany) 
Tyler Hasenstein (NWS 
MPX) Matt Bunkers (NWS UNR) Justin Gibbs (NWS WDTD) Matt Clark (UK Met) David King (NWS MTR) 

Binbin Zhou (EMC) Marcel Caron (EMC) Eswar Iyer (NWS AKQ) Brian Tentinger (NWS BGM) 
Jonathan Garner (NWS 
EKA) 

Xiaoyan Zhang (EMC) Shun Liu (EMC) David Thomas (NWS BUF) Mike Johnson (NWS MEG) Kyle Pallozzi (NWS LWX) 
Eric Aligo (EMC) David Dowell (GSL) Tony Wardle (UK Met) Mike Dutter (NWS AKQ) Jidong Gao (NSSL) 
Scott Kleebauer (NWS MAF) Justin Schultz (NWS DLH) Sebastian Cole (UK Met) Remington Lilya (St. Cloud) Jeff Beck (GSL) 
Jeff Duda (GSL) John Boris (NWS APX) Alyssa Clements (NWS ABQ) Gang Zhou (EMC) Chauncy Schultz (NWS BIS) 
Terra Ladwig (GSL) Austin Coleman (TTU) Dylan Lusk (NWS FFC) Matthew Pyle (EMC) Logan Dawson (EMC) 
Craig Evanego (NWS CTP) Jason Frazier (NWS PBZ) Justin Arnott (NWS GYX) Ben Blake (EMC) Geoff Manikin (EMC) 
Chris Noles (NWS PAH) Jay Engle (NWS OKX) Jacob Carley (EMC) Craig Hartsough (GSL) Edward Colon (EMC) 
Lee Britt (NWS DLH) Stephen Travis (NWS CTP) Matt Morris (EMC) Kyle Pederson (GSL) Linda Gilbert (NWS MQT) 
Andrew Snyder (NWS LWX) Tom Hultquist (NWS MPX) Chris MacIntosh (EMC) Jeffrey Hovis (NWS RLX) Curtis Alexander (GSL) 
Jonty Hall (BoM) Melody Sturm (BoM; M-Th) John Brown (GSL) Pete Wolf (NWS JAX) Harald Richter (BoM) 
Sean Ernst (OU) Aidan Kuroski (NWS MKX) Ed Szoke (GSL) Drew Shearer (OU) Cameron Miller (NWS MKX) 

 Aurora Bell (BoM; M-W) Matthew Campbell (NWS ILN) Dan Kubalek (OU) 
Thomas Winesett (NWS 
JAN) 

 Derrick Snyder (NWS PAH) Adam Gill (NWS BGM) Frank Alsheimer (NWS CAE) Logan Poole (NWS JAN) 

 Charles Smith (NWS MFR) Christopher Kent (BoM) Brendon Rubin-Oster (NWS LWX) Sarah Trojniak (WPC) 

   Alexander Majchrowski (BoM) Tony Wedd (BoM) 

   Dean Sgarbossa (BoM)  

SFE Facilitators: Adam Clark (NSSL), Israel Jirak (SPC), Dave Imy (retired SPC), Burkely Gallo (CIWRO/SPC), Kenzie Krocak 
(CIWRO/SPC/CRCM), Brett Roberts (CIWRO/SPC/NSSL), Kent Knopfmeier (CIWRO/NSSL), Chris Karstens (SPC), Eric Loken 
(CIWRO/NSSL), David Harrison (CIWRO/SPC), David Jahn (CIWRO/SPC), Jacob Vancil (CIWRO/SPC), Jeff Milne (CIWRO/SPC), 
Allie Brannan (CIWRO/SPC) and Nathan Dahl (CIWRO/SPC). 
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Appendix B: Organizational structure of the NOAA/Hazardous Weather Testbed 
 

NOAA’s Hazardous Weather Testbed (HWT) is a facility jointly managed by the National Severe 
Storms Laboratory (NSSL), the Storm Prediction Center (SPC), and the NWS Oklahoma City/Norman 
Weather Forecast Office (OUN) within the National Weather Center building on the University of 
Oklahoma South Research Campus.  The HWT is designed to accelerate the transition of promising new 
meteorological insights and technologies into advances in forecasting and warning for hazardous 
mesoscale weather events throughout the United States.  The HWT facilities are situated between the 
operations rooms of the SPC and OUN.  The proximity to operational facilities, and access to data and 
workstations replicating those used operationally within the SPC, creates a unique environment 
supporting collaboration between researchers and operational forecasters on topics of mutual interest. 

The HWT organizational structure is composed of three overlapping programs (Fig. B1).  The 
Experimental Forecast Program (EFP) is focused on predicting hazardous mesoscale weather events on 
time scales ranging from hours to a week in advance, and on spatial domains ranging from several 
counties to the CONUS. The EFP embodies the collaborative experiments and activities previously 
undertaken by the annual SPC/NSSL Spring Experiments.  For more information see 
https://hwt.nssl.noaa.gov/efp/.  

The Experimental Warning Program (EWP) is concerned with detecting and predicting mesoscale 
and smaller weather hazards on time scales of minutes to a few hours, and on spatial domains from 
several counties to fractions of counties.  The EWP embodies the collaborative warning-scale 
experiments and technology activities previously undertaken by the OUN and NSSL.  For more 
information about the EWP see https://hwt.nssl.noaa.gov/ewp/.  A key NWS strategic goal is to extend 
warning lead times through the “Warn-on-Forecast” concept (Stensrud et al. 2009), which involves using 

Figure B1:  The umbrella of the NOAA Hazardous Weather Testbed (HWT) encompasses two 
program areas:  The Experimental Forecast Program (EFP), the Experimental Warning 
Program (EWP), and the GOES-R Proving Ground (GOES-R). 
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frequently updated short-range forecasts (≤ 1h lead time) from convection-resolving ensembles.  This 
provides a natural overlap between the EFP and EWP activities. 

The GOES-R Proving Ground (established in 2009) exists to provide demonstration of new and 
innovative products as well as the capabilities available on the next generation GOES-16 satellite.  The 
PG interacts closely with both product developers and NWS forecasters. More information about GOES-
R Proving Ground is found at http://cimss.ssec.wisc.edu/goes_r/proving-ground.html. 

Rapid science and technology infusion for the advancement of operational forecasting requires 
direct, focused interactions between research scientists, numerical model developers, information 
technology and communication specialists, and operational forecasters.  The HWT provides a unique 
setting to facilitate such interactions and allows participants to better understand the scientific, 
technical, and operational challenges associated with the prediction and detection of hazardous 
weather events.  The HWT allows participating organizations to: 

 
• Refine and optimize emerging operational forecast and warning tools for rapid integration into 

operations  
• Educate forecasters on the scientifically correct use of newly emerging tools and to familiarize 

them with the latest research related to forecasting and warning operations  
• Educate research scientists on the operational needs and constraints that must be met by any 

new tools (e.g., robustness, timeliness, accuracy, and universality)  
• Motivate other collaborative and individual research projects that are directly relevant to 

forecast and warning improvement 
 

For more information about the HWT, see https://hwt.nssl.noaa.gov/.  Detailed historical 
background about the EFP Spring Experiments, including scientific and operational motivation for the 
intensive examination of high resolution NWP model applications for convective weather forecasting, 
and the unique collaborative interactions that occur within the HWT between the research and 
operational communities, are found in Kain et al. (2003), Weiss et al. (2010 – see 
http://www.spc.noaa.gov/publications/weiss/hwt-2010.pdf), Clark et al. (2012; 2018; 2020; 2021), and 
Gallo et al. (2017). 
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Appendix C: Mandatory 2022 CLUE Fields 

1. Mean Sea Level Pressure 26. CIN (most unstable) 
2. Composite reflectivity 27. CAPE (mixed layer) 
3. Reflectivity at -10 C 28. CIN (mixed layer) 
4. Maximum surface wind gust 29. 0-3 km AGL storm relative helicity 
5. hrly-max upward motion 100-1000 hPa 30. 0-1 km AGL storm relative helicity 

6. hrly-max downward motion 100-1000 hPa 31. 2-5 km AGL UH (instantaneous) 
7. Reflectivity at 1-km AGL 32. Echo Top Height 
8. Hrly-max reflectivity at 1-km 33. 300 hPa Height 
9. Hrly-max reflectivity at -10 C 34. 300 hPa u-wind 
10. Hrly-max 2-5 km AGL UH 35. 300 hPa v-wind 
11. Hrly-min 2-5 km AGL UH 36. 300 hPa temperature 
12. Hrly-max 0-3 km AGL UH 37. 500 hPa Height 
13. Hrly-min 0-3 km AGL UH 38. 500 hPa u-wind 
14. Surface Pressure 39. 500 hPa v-wind 
15. Surface Height 40. 500 hPa temperature 
16. 2-m temperature 41. 700 hPa Height 
17. 2-m dewpoint 42. 700 hPa u-wind 
18. 2-m relative humidity 43. 700 hPa v-wind 
19. 10-m u-wind 44. 700 hPa temperature 
20. 10-m v-wind 45. 850 hPa Height 
21. Hrly-max 10-m Wind Speed 46. 850 hPa u-wind 
22. Surface total precipitation (run total) 47. 850 hPa v-wind 
23. CAPE (surface parcel) 48. 850 hPa temperature 
24. CIN (surface parcel) 49. 850 hPa specific humidity 
25. CAPE (most unstable)  
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