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1. Introduction 
 

Each spring, the Experimental Forecast Program (EFP) of the NOAA/Hazardous Weather Testbed 
(HWT), organized by the Storm Prediction Center (SPC) and National Severe Storms Laboratory (NSSL), 
conducts a collaborative experiment to test emerging concepts and technologies designed to improve 
the prediction of hazardous convective weather.  The primary goals of the HWT are to accelerate the 
transfer of promising new tools from research to operations, to inspire new initiatives for operationally 
relevant research, and to identify and document sensitivities and the performance of state-of-the art 
experimental convection-allowing (1 to 3 km grid-spacing) modeling systems.   

The 2021 Spring Forecasting Experiment (SFE 2021), a cornerstone of the EFP, will be conducted 
3 May – 4 June.  Because of the COVID-19 pandemic, restrictions on travel and gatherings preclude an 
in-person experiment in the HWT for the second consecutive year.  However, to maintain momentum 
in several areas of convection-allowing model (CAM) development, the EFP will once again conduct a 
virtual experiment.  Relative to SFE 2020, this year’s virtual experiment will have more forecasting 
activities, and all participants – not just National Weather Service (NWS) forecasters – will have the 
opportunity to participate in these forecasting activities.  Additionally, participants will perform next-
day evaluations of model performance.  As in previous years, a suite of new and improved experimental 
CAM guidance contributed by our large group of collaborators will be central these forecasting and 
model evaluation activities.  These contributions comprise an ensemble framework called the 
Community Leveraged Unified Ensemble (CLUE; Clark et al. 2018).  The 2021 CLUE is constructed by 
using common model specifications (e.g., grid-spacing, model version, domain size, post-processing, 
etc.) wherever possible so that the simulations contributed by each group can be used in carefully 
designed controlled experiments.  This design will once again allow us to conduct several experiments 
geared toward identifying optimal configuration strategies for deterministic CAMs and CAM ensembles.  
The 2021 CLUE includes 64 members with 3-km grid-spacing.  SFE 2021 will also involve the continued 
testing of the Warn-on-Forecast System (WoFS, hereafter), which produces 18-member, 3-km grid-
spacing forecasts, and will be used for the fourth year to issue very short lead-time outlooks.  
Additionally, a deterministic, 1.5-km grid-spacing simulation using dual resolution, hybrid data 
assimilation (WoFS-hybrid) will complement the full WoFS ensemble.   

This document summarizes the core interests of SFE 2021 with information on experiment 
operations.  The organizational structure of the HWT and information on various forecast tools and 
diagnostics can also be found in this document.  The remainder of the operations plan is organized as 
follows: Section 2 provides details on model and products being tested during SFE 2021 and Section 3 
describes the core interests and new concepts being introduced for SFE 2021.  A list of daily participants, 
details on the SFE forecasting, and more general information on the HWT are found in appendices. 
 
2.  Overview of Experimental Products and Models  
 

Daily model evaluation activities will occur from 9:15 – 11:00am (CDT) focusing on various CLUE 
subsets.  The 2021 CLUE includes deterministic and ensemble forecasts using the most recent versions 
of the Finite Volume Cubed-Sphere Limited Area Model (FV3-LAM), as well as the Advanced Research 
Weather Research and Forecasting (WRF-ARW) model.  In addition to the CLUE, the operational 3-km 
grid-spacing High-Resolution Ensemble Forecast system version 3 (HREFv3) will be examined.  The rest 
of this section provides further details on each modeling system utilized in SFE 2021.   
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a) The 2021 Community Leveraged Unified Ensemble (CLUE) 
 
 The CLUE is a carefully designed ensemble with members contributed by NSSL, NOAA’s 
Environmental Modeling Center (EMC), NOAA’s Global Systems Laboratory (GSL), NOAA’s Geophysical 
Fluid Dynamics Laboratory (GFDL), and the Multi-scale data Assimilation and Predictability (MAP) group 
at the University of Oklahoma.  CLUE members have 3-km grid-spacing and either a CONUS or North 
America domain. Depending on the CLUE subset, forecast lengths range from 18 to 126 h.  Table 1 
summarizes all 2021 CLUE contributions.  Subsequent tables provide details on members in each subset. 
 
Table 1 Summary of the 14 unique subsets that comprise the 2021 CLUE. 

Clue Subset # of 
mems 

IC/LBC 
perts 

Mixed 
Physics 

Data 
Assimilation 

Model 
Core 

Agency Init. Times 
(UTC) 

Forecast 
Length (h) 

Domain 

GSL RRFS 9 HRRRDAS/ 
GEFS 

no EnKF FV3 GSL 00, 12 60, 48 CONUS 

HRRRE-S 9 HRRRDAS/ 
GEFS 

no EnKF ARW GSL 12 24 CONUS 

HRRRE-M 9 HRRRDAS/ 
GEFS 

yes EnKF ARW GSL 12 24 CONUS 

GSL FV3-LAM 1 none no Hybrid 3DEnVar 
(GDAS Ensemble) 

FV3 GSL 00-23 
(hourly) 

20x18h, 
4x48h 

CONUS 

GSL FV3-LAM-
NA 

1 none no cold start from 
GFS 

FV3 GSL 00, 12 60, 60 N. America 

EMC FV3-LAM 1 none no cold start from 
GFS 

FV3 EMC 00, 12 60, 60 CONUS 

EMC FV3-
LAMX 

1 none no cold start from 
GFS 

FV3 EMC  00, 12 60, 60 N. America 

EMC FV3-
LAMDAX 

1 none no Hybrid 3DEnVar 
(GDAS EnKF) 

FV3 EMC 00, 12 60, 60 CONUS 

HRRRv4 1 none no GSI-EnVar ARW EMC 00-23 
(hourly) 

20x18h, 
4x48h 

CONUS 

RRFS Cloud 9 GFS, GEFS yes cold start from 
GFS, GEFS 

FV3 EMC/GSL 00 60 N. America 

MAP RRFS 10 GFS, GEFS no GSI-EnVar FV3 OU-MAP 21, 00 39, 36 CONUS 

MAP RRFS VTS 10 GFS, GEFS no GSI-EnVar FV3 OU-MAP 21, 00 39, 36 CONUS 

NSSL FV3-LAM 1 none no cold start from 
GFS 

FV3 NSSL 00 60 CONUS 

GFDL FV3 1 none no cold start from 
GFS 

FV3 GFDL 00 126 CONUS 
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Table 2 Specifications for the GSL RRFS CLUE members.  The GSL RRFS is a 9-member 3-km CONUS FV3-LAM ensemble 
forecast. Initial conditions come from the operational hourly-cycled, 3-km ensemble (“HRRR Data-Assimilation System” 
or “HRRRDAS”; https://rapidrefresh.noaa.gov/internal/pdfs/2020_Spring_Experiment_HRRRE_Documentation.pdf) 
that is a component of HRRRv4.  RRFS forecast member 1 is an unperturbed “control member” initialized from the 
analysis mean of the HRRRDAS.  GSL RRFS members 2-9 are perturbed forecasts initialized from the corresponding 
members in the HRRRDAS.  The perturbed members 2-9 also include stochastic parameter perturbations (SPP) applied to 
the land-surface, PBL, and microphysics schemes plus stochastically perturbed parameterization tendencies (SPPT).  This 
ensemble will be initialized at 00z and 12z each day with forecasts to 60 and 48 hrs respectively. 

 

Table 3 Specifications for the HRRRE-S (“single-physics”) CLUE members. The legacy HRRR Ensemble is a 9-member, WRF-
ARW forecast.  Initial conditions come from the operational hourly-cycled, 3-km ensemble (“HRRR Data-Assimilation 
System” or “HRRRDAS”) that is a component of HRRRv4.  HRRRE forecast member 1 is an unperturbed “control member” 
initialized from the analysis mean of the HRRRDAS.  HRRRE members 2-9 are perturbed forecasts initialized from the 
corresponding members in the HRRRDAS.  The perturbed members 2-9 include stochastic parameter perturbations (SPP) 
applied to the land-surface, PBL, and microphysics schemes plus stochastically perturbed parameterization tendencies 
(SPPT).  The 2021 HRRRE-S configuration is very similar to the 2020 configuration; the most important difference is that 
member 1 is now an unperturbed forecast initialized from the ensemble mean.  As in previous years, the HRRRDAS 
analyses and HRRRE-S forecasts provide initial conditions and boundary conditions for the experimental WoFS.  This 
HRRRE ensemble will be initialized at 12z each day with forecasts to 24 hrs.  

 

 

 

 

 

Members:  
GSL RRFS 

ICs LBCs Microphysics PBL LSM Radiation Model 

gsl-rrfs01 enkf_mean GEFS Thompson MYNN RUC RRTMG FV3 
gsl-rrfs02 HRRRDAS GEFS Thompson MYNN RUC RRTMG FV3 
gsl-rrfs03 HRRRDAS GEFS Thompson MYNN RUC RRTMG FV3 
gsl-rrfs04 HRRRDAS GEFS Thompson MYNN RUC RRTMG FV3 
gsl-rrfs05 HRRRDAS GEFS Thompson MYNN RUC RRTMG FV3 
gsl-rrfs06 HRRRDAS GEFS Thompson MYNN RUC RRTMG FV3 
gsl-rrfs07 HRRRDAS GEFS Thompson MYNN RUC RRTMG FV3 
gsl-rrfs08 HRRRDAS GEFS Thompson MYNN RUC RRTMG FV3 
gsl-rrfs09 HRRRDAS GEFS Thompson MYNN RUC RRTMG FV3 

Members: 
HRRRE-S 

ICs LBCs Microphysics PBL LSM Radiation Model 

hrrre-s01 enkf_mean GFS Thompson MYNN RUC RRTMG ARW 
hrrre-s02 enkf_m02 GEFS Thompson MYNN RUC RRTMG ARW 
hrrre-s03 enkf_m03 GEFS Thompson MYNN RUC RRTMG ARW 
hrrre-s04 enkf_m04 GEFS Thompson MYNN RUC RRTMG ARW 
hrrre-s05 enkf_m05 GEFS Thompson MYNN RUC RRTMG ARW 
hrrre-s06 enkf_m06 GEFS Thompson MYNN RUC RRTMG ARW 
hrrre-s07 enkf_m07 GEFS Thompson MYNN RUC RRTMG ARW 
hrrre-s08 enkf_m08 GEFS Thompson MYNN RUC RRTMG ARW 
hrrre-s09 enkf_m09 GEFS Thompson MYNN RUC RRTMG ARW 
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Table 4 Specifications for the HRRRE-M (“mixed-physics”) CLUE members (WRF-ARW). Motivated by results from previous 
SFEs, the potential value that physics-scheme diversity adds to ensemble forecasts will be tested in the HRRRE framework 
this year by running a mixed-physics ensemble forecast to complement the standard single-physics ensemble forecast.  
In the HRRRE-M, members 1-5 run with HRRR physics (including stochastic physics for members 2-5) while members 6-9 
run with a physics configuration that has been used previously in the NSSL WRF.  Since members 1-5 of HRRRE-M and 
HRRRE-S are identical, any differences between the two ensemble forecasts overall depend specifically on differences in 
how members 6-9 are configured.  This HRRRE ensemble will be initialized at 12z each day with forecasts to 24 hrs. 

 

Table 5 Specifications for the GSL FV3-LAM CLUE member. GSL in collaboration with EMC, NSSL and other organizations will 
be providing experimental deterministic configurations of the FV3-based limited area model (LAM) system running on a 
3-km grid.  This system is under development and testing towards a future operational implementation as part of the 
Unified Forecast System (UFS) Convection Allowing Model (CAM) application known as the Rapid Refresh Forecast System 
(RRFS).  This configuration uses a recent version of the RAP/HRRR physics suite along with hourly-cycled data assimilation 
using a hybrid 3DEnVar (GDAS ensemble) analysis and periodically drawing initial and boundary conditions from a 13-
km North American FV3LAM hourly-cycled configuration using the same RAP/HRRR physics suite.  The 3-km hourly-
updating forecasts are initialized over CONUS with forecasts to 60 hrs once every six hours and 18 hrs otherwise. 

 

Table 6 Specifications for the GSL FV3-LAM-NA CLUE member. This configuration uses a recent version of the RAP/HRRR 
physics suite matching the other GSL FV3-LAM configuration but with initial and boundary conditions taken from the 
GFSv16.  No data assimilation is executed with this configuration.  The 3-km forecasts are initialized over North America 
at 00z and 12z with forecasts to 60 hrs. 

Members:  
GSL FV3-LAM-NA 

ICs LBCs DA 
(yes/no) 

Domain Micro- 
physics 

PBL LSM Radiation Model 

GSL FV3-LAM-NA GFSv16 GFSv16f no N. America Thompson MYNN RUC RRTMG FV3 
 

Table 7 Specifications for the EMC FV3-LAM CLUE member. This member is the control version of EMC’s FV3-LAM 
contributions.  It uses a cold start and runs over the CONUS.   

Members:  
EMC FV3-LAM 

ICs LBCs DA 
(yes/no) 

Domain Micro- 
physics 

PBL LSM Radiation Model 

EMC FV3-LAM GFSv16 GFSv16f no CONUS Thompson MYNN NOAH RRTMG FV3 

Members: 
HRRRE-M 

ICs LBCs Microphysics PBL LSM Radiation Model 

hrrre-m01 enkf_mean GFS Thompson MYNN RUC RRTMG ARW 
hrrre-m02 enkf_m02 GEFS Thompson MYNN RUC RRTMG ARW 
hrrre-m03 enkf_m03 GEFS Thompson MYNN RUC RRTMG ARW 
hrrre-m04 enkf_m04 GEFS Thompson MYNN RUC RRTMG ARW 
hrrre-m05 enkf_m05 GEFS Thompson MYNN RUC RRTMG ARW 
hrrre-m06 enkf_m06 GEFS WSM6 MYJ NOAH RRTM, Dudhia ARW 
hrrre-m07 enkf_m07 GEFS WSM6 MYJ NOAH RRTM, Dudhia ARW 
hrrre-m08 enkf_m08 GEFS WSM6 MYJ NOAH RRTM, Dudhia ARW 
hrrre-m09 enkf_mean GEFS WSM6 MYJ NOAH RRTM, Dudhia ARW 

Member:  
GSL FV3-LAM 

ICs LBCs DA 
(yes/no) 

Domain Micro-
physics 

PBL LSM Radiation Model 

GSL FV3-LAM Cycled 13-km 
FV3-LAM 

yes CONUS Thompson MYNN RUC RRTMG FV3 
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Table 8 Specifications for the EMC FV3-LAMX CLUE member.  This configuration runs over an expanded North American 
domain, but is otherwise identical to the EMC FV3-LAM configuration.  The EMC FV3-LAMX will underpin the RRFS, a 
rapid-update, convection-allowing ensemble data assimilation and prediction system planned for implementation in the 
NCEP production suite during the Q4FY2023 timeframe. 

Members:  
EMC FV3-LAMX 

ICs LBCs DA 
(yes/no) 

Domain Micro- 
physics 

PBL LSM Radiation Model 

EMC FV3-LAMX GFSv16 GFSv16f no N. America Thompson MYNN NOAH RRTMG FV3 
 

Table 9 Specifications for the EMC FV3-LAMDAX CLUE member.  This configuration is similar to the EMC FV3-LAM, but it is 
initialized from a 6-h data assimilation cycle with the 3-km regional FV3 model with hourly analysis updates using RAP 
observations.  The DA cycle is cold-started from a 6-h GDAS forecast valid at 6-h prior to forecast start time.   

Members:  
EMC FV3-LAMDAX 

ICs LBCs DA 
(yes/no) 

Domain Micro- 
physics 

PBL LSM Radiation Model 

EMC FV3-LAMDAX GFSv16 GFSv16f no CONUS Thompson MYNN NOAH RRTMG FV3 
 

Table 10 Specifications for the HRRRv4 CLUE member.  The final update to the deterministic HRRRv4 was implemented 
operationally in June 2020. The physics suite for HRRRv4 continues to use actively-developed versions of Thompson et al. 
(2014) aerosol-aware microphysics, MYNN PBL scheme, RUC land surface model and RRTMG SW/LW radiation 
schemes.  Enhancements have been made to the MYNN PBL scheme to further improve both representation of sub-grid-
scale clouds and their effects on the local environment (reducing model bias of incoming radiation and 
temperature/moisture fields).  Gravity-wave drag enhancements have been made to improve representation of the 
effects of sub-grid terrain on the horizontal flow.  Land surface model and state changes include installation of an inland 
lake model for improved lake-temperature prediction, higher-resolution MODIS albedo and inland lake datasets, use of 
fractional sea-ice data and FVCOM dynamic specification of temperature and ice concentrations for the Great 
Lakes.  Enhancements to numerics in HRRRv4 include a reduction in magnitude of the 6th order filter for momentum, 
thermodynamic and hydrometeor fields to improve depiction of weaker small-scale cloud and precipitation features.  A 
new implicit-explicit vertical advection scheme in HRRRv4 permits larger vertical motion in intense convection to facilitate 
improved diagnosis of rotational features such as mesocyclones.  For data assimilation, The HRRRv4 uses an updated 
version of GSI and includes assimilation of additional datasets including lightning data from GOES (GLM), aircraft and 
RAOB moisture observations above 300 mb.  A 36-member, hourly-cycled, storm-scale ensemble data assimilation 
system (HRRRDAS) provides a background deterministic state estimate (ensemble mean) and background ensemble for 
initialization of the CONUS HRRRv4.  This system is designed to improve use of conventional and radar observations 
during data assimilation with better representation of meso-to-storm scale covariances when compared with the 
comparatively coarse global ensemble (GDAS) used in HRRRv3.  More accurate retention and evolution of meso-to-storm 
scale features, particularly in the early forecast hours, are intended benefits of HRRRDAS use.  The HRRRDAS, while 
intended to improve deterministic HRRRv4 forecasts, also forms the basis for HRRR ensemble forecasts described in the 
HRRRE section.  

Member: 
HRRRv4 

ICs LBCs Microphysics PBL LSM Radiation Model 

HRRRv4 HRRRDAS RAP Thompson MYNN RUC RRTMG ARW 
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Table 11 Specifications for the RRFS Cloud CLUE members. As a part of a collaborative effort between EMC, GSL, and NSSL a 
prototype 9-member RRFS ensemble will be run for the first time using cloud-based high performance computing.  Three 
physics suites will be utilized: Thompson MP / MYNN PBL, GFDL MP / TKE-EDMF PBL, and NSSL MP / Hybrid-EDMF PBL.  
With each physics suite, one member will not contain any stochastic perturbations (GFS mem), one member will use SPPT 
(mem 1), and the remaining member will have SPPT/SHUM/SKEB perturbations (mem 2). Initial condition and lateral 
boundary perturbations are provided via 6-h forecasts from the 18Z GFS and GEFS. This system will provide one 00Z 
ensemble forecast per day over North America out to 60-h (12-h longer than the upcoming HREFv3). 

 

Table 12 Specifications for the MAP RRFS CLUE members.  These 3-km grid-spacing ensemble forecasts are run with FV3LAM 
and initialized by a GSI-based hybrid EnVar DA system directly assimilating both conventional and radar reflectivity 
observations (Johnson et al. 2015, Wang and Wang 2017). The ensemble for data assimilation has 36 members. The LBCs 
are provided by re-centering GEFS around the GFS control, with external ICs provided at 1800 UTC by the GFS control 
member and GEFS ensemble members.  The system assimilates both operational RAP/HRRR in-situ data stream and 
MRMS radar reflectivity hourly during 1900-0000 UTC over the CONUS domain. Two 10-member ensemble forecasts are 
initialized at 2100 and 0000 UTC and advanced for 39 and 36 hours, respectively, including a control forecast member 
(map-hybrid01) initialized from the GSI based EnVar control analysis and 9-members from the GSI EnKF analyses re-
centered around the control member. The same physics schemes as listed below are adopted for all members in both 
data assimilation and ensemble free forecasts. 

Members:  
MAP RRFS 

ICs LBCs VTS 
(yes/no) 

Domain Micro- 
physics 

PBL LSM Radiation Model 

map-rrfs01 EnVar GFS no CONUS Thompson MYNN RUC RRTMG FV3 
map-rrfs02 rEnKF_m1 GEFS no CONUS Thompson MYNN RUC RRTMG FV3 
map-rrfs03 rEnKF_m2 GEFS no CONUS Thompson MYNN RUC RRTMG FV3 
map-rrfs04 rEnKF_m3 GEFS no CONUS Thompson MYNN RUC RRTMG FV3 
map-rrfs05 rEnKF_m4 GEFS no CONUS Thompson MYNN RUC RRTMG FV3 
map-rrfs06 rEnKF_m5 GEFS no CONUS Thompson MYNN RUC RRTMG FV3 
map-rrfs07 rEnKF_m6 GEFS no CONUS Thompson MYNN RUC RRTMG FV3 
map-rrfs08 rEnKF_m7 GEFS no CONUS Thompson MYNN RUC RRTMG FV3 
map-rrfs09 rEnKF_m8 GEFS no CONUS Thompson MYNN RUC RRTMG FV3 
map-rrfs10 rEnKF_m9 GEFS no CONUS Thompson MYNN RUC RRTMG FV3 

 

Members:  
RRFS Cloud 

ICs LBCs Micro-
physics 

PBL LSM Radiation Model 

rrfs-cloud01 18ZGFS GFS Thompson MYNN NOAH RRTMG FV3 
rrfs-cloud02 18ZGEFS 

mem1 
GEFS 
mem1 

Thompson MYNN NOAH RRTMG FV3 

rrfs-cloud03 18ZGEFS 
mem2 

GEFS 
mem2 

Thompson MYNN NOAH RRTMG FV3 

rrfs-cloud04 18ZGFS GFS GFDL TKE-EDMF NOAH RRTMG FV3 
rrfs-cloud05 18ZGEFS 

mem1 
GEFS 
mem1 

GFDL TKE-EDMF NOAH RRTMG FV3 

rrfs-cloud06 18ZGEFS 
mem2 

GEFS
mem2 

GFDL TKE-EDMF NOAH RRTMG FV3 

rrfs-cloud07 18ZGFS GFS NSSL hybrid-EDMF NOAH RRTMG FV3 
rrfs-cloud08 18ZGEFS 

mem1 
GEFS 
mem1 

NSSL hybrid-EDMF NOAH RRTMG FV3 

rrfs-cloud09 18ZGEFS 
mem2 

GEFS 
mem2 

NSSL hybrid-EDMF NOAH RRTMG FV3 
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Table 13 Specifications for the MAP RRFS VTS CLUE members. The configuration of the valid time shifted (vts; Gasperoni et 
al. 2021, Huang and Wang 2018) ensemble forecasts follow the “hybrid” DA configuration of Table 12, but includes vts-
expanded ensemble covariances for the control member (vts01) radar EnVar analysis during hourly cycling. By including 
36-member output 30-min before and after each central analysis time to the original ensemble, the 108-member vts-
expanded ensemble covariances mimic the effects of directly increasing ensemble size by a factor of 3 and includes 
information of model timing/phase uncertainty in convective systems. The remaining 9 members (vts02-vts10) are 
updated using the same EnKF procedure as in Table 12. Although vts is only directly applied to the radar EnVar update 
of the control member, its effects may further transfer to members 2-10 via recentering around the vts-enabled analyses. 

Members:  
MAP RRFS VTS 

ICs LBCs VTS 
(yes/no) 

Domain Micro- 
physics 

PBL LSM Radiation Model 

map-rrfs-vts01 vts-enabled 
EnVAR 

GFS yes CONUS Thompson MYNN RUC RRTMG FV3 

map-rrfs-vts02 rEnKF_m1 GEFS yes CONUS Thompson MYNN RUC RRTMG FV3 
map-rrfs-vts03 rEnKF_m2 GEFS yes CONUS Thompson MYNN RUC RRTMG FV3 
map-rrfs-vts04 rEnKF_m3 GEFS yes CONUS Thompson MYNN RUC RRTMG FV3 
map-rrfs-vts05 rEnKF_m4 GEFS yes CONUS Thompson MYNN RUC RRTMG FV3 
map-rrfs-vts06 rEnKF_m5 GEFS yes CONUS Thompson MYNN RUC RRTMG FV3 
map-rrfs-vts07 rEnKF_m6 GEFS yes CONUS Thompson MYNN RUC RRTMG FV3 
map-rrfs-vts08 rEnKF_m7 GEFS yes CONUS Thompson MYNN RUC RRTMG FV3 
map-rrfs-vts09 rEnKF_m8 GEFS yes CONUS Thompson MYNN RUC RRTMG FV3 
map-rrfs-vts10 rEnKF_m9 GEFS yes CONUS Thompson MYNN RUC RRTMG FV3 

 

Table 14 Specifications for the NSSL FV3-LAM CLUE member.  This member is configured the same as the EMC FV3-LAM 
member, but with the NSSL microphysics scheme.   

 

Table 15 Specifications for the GFDL FV3 CLUE member. GFDL’s C-SHiELD (Harris et al., 2019) is an FV3-based model that uses 
a 13-km global grid and a 3-km factor-of-five CONUS nest, coupled to a modified form of the GFS Physics. C-SHiELD uses 
the GFDL In-line Microphysics (Zhou et al. 2019; Harris et al. 2020) and the EMC/UW TKE-EDMF PBL scheme (Han and 
Bretherton 2019). The deep convective scheme is disabled on the nested grid. On the CONUS nest the Noah-MP LSM is 
used; the global domain uses the GFS Noah LSM. Initialization is cold start from regridded GFS real-time analyses. GFDL 
will provide simulations run daily at 00Z out to 126 hours to demonstrate the potential for medium-range prediction of 
convective-scale events. 

Member: 
GFDL FV3 

ICs LBCs Microphysics PBL LSM Radiation Model 

GFDL FV3 GFS n/a GFDL TKE-
EDMF 

NOAH-MP RRTMG FV3 

 

 
The configuration of the 2021 CLUE will allow for several unique experiments that have been 

designed to examine issues immediately relevant to the design of a NCEP/EMC operational CAM-based 
ensemble.  Some of the major themes are listed below: 
 

Member:  
NSSL FV3-LAM 

ICs LBCs Microphysics PBL LSM Radiation Model 

 NSSL FV3-LAM GFSv16 GFSv16 NSSL MYNN NOAH RRTMG FV3 



 

 
11 

Valid Time Shifting Data Assimilation: The OU MAP group has a project to test the impact of a data 
assimilation approach known as Valid Time Shifting (VTS).  This approach is a cost-effective way to 
increase the membership (by a factor of three) for the background ensemble in convective scale, hybrid 
EnVar data assimilation.  The increased membership is achieved by populating the background ensemble 
with analyses valid at slightly different lead times.  Ensembles with and without (Tables 13 & 14, 
respectively) VTS initialized at 2100 and 0000 UTC will be examined.    
 
RRFS Configuration Strategies: Several different ensembles will be contributed and evaluated against 
the HREFv3.  The goal is to identify a strategy within the UFS framework (i.e., single-model, FV3-LAM) 
that performs as good as or better than HREFv3, so that it can serve as a replacement in NCEP’s 
production suite.  These ensembles include GSL RRFS (Table 2), RRFS Cloud (Table 11), MAP RRFS (Table 
12), and MAP RRFS VTS (Table 13) that vary in data assimilation and physics strategies.   
 
CAM Ensemble Physics: Two configurations of the 12Z HRRRE will be compared to assess the role of a 
mixed-physics approach for increasing the spread and diversity of CAM ensemble forecasts.  One 
ensemble (HRRRE-S) uses a single physics scheme with SPP and SPPT stochastic perturbations while the 
other ensemble (HRRRE-M) replaces four of the members from HRRRE-S with a different physics 
configuration based on the NSSL-WRF. 
 
FV3-LAM Configurations: GSL, NSSL, EMC, and GFDL will run various configurations of FV3 (Tables 5-9, 
11, & 14-15).  These coordinated runs will allow for the assessment of many aspects of FV3-LAM 
configuration including physics, data assimilation, initial conditions, domain, and impact of stochastic 
physics.     
 
Day 2 FV3-LAM performance: New to SFE 2021 will be evaluation of FV3-LAM configurations for the Day 
2 forecast period (i.e., forecast hours 36-60), which will focus on the pairs of EMC and GSL configurations 
that use CONUS and North America domains.  Specifically, EMC FV3-LAM (Table 7), EMC FV3-LAMX 
(Table 8), GSL FV3-LAM (Table 5), and GSL FV3-LAM-NA (Table 6).    
 
3D-RTMA Background: Two hourly versions of the 3D-RTMA will be compared to assess the role that the 
background first-guess plays on the final analysis.  One version from EMC uses the operational HRRRv4 
as the background while the other version from GSL uses the FV3-LAM as the background. 
 

To ensure consistent post-processing, visualization, and verification, post-processing is standardized 
as much as possible, so that a consistent set of model output fields are output on the same grid.  For 
both WRF-ARW and FV3-LAM, the Unified Post-Processor software (UPP; available at 
http://www.dtcenter.org/upp/users/downloads/index.php) is used.  For the WRF-ARW runs (HRRRv4, 
HRRRE-S, & HRRRE-M), there are about 150 fields output that are relevant to a broad range of forecasting 
needs, including aviation, severe weather, and precipitation.  The number of FV3-LAM output fields is 
smaller, about 50, but includes sensible weather fields, storm diagnostics, and environmental indices 
important for severe weather forecasting. 
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b) High Resolution Ensemble Forecast (HREFv3) System 
 
 HREFv3 is a 10-member CAM ensemble scheduled for operational implementation 11 May 2021.  
HREFv3 will replace HREFv2.1.  The design of HREFv3 originated from the SSEO, which demonstrated 
skill for six years in the HWT and SPC prior to operational implementation.  In HREFv3, the HRW NMMB 
simulations have been replaced with HRW FV3 and HRRRv3 has been upgraded to HRRRv4.    
 
Table 16 Model specifications for HREFv3.   

HREFv3 ICs LBCs Micro-
physics 

PBL dx (km) Vertical 
Levels 

Included in 
HREF hours 

HRRRv4 HRRRDAS RAP -1h Thompson MYNN 3.0 50 0 – 48 

HRRRv4 -6h HRRRDAS RAP -1h Thompson MYNN 3.0 50 0 – 42 

HRW ARW RAP GFS -6h WSM6 YSU 3.2 50 0 – 48 

HRW ARW -12h RAP GFS -6h WSM6 YSU 3.2 50 0 – 36 

HRW FV3 GFS GFS -6h GFDL EDMF 3 50 0 – 60 

HRW FV3 -12h GFS GFS-6h GFDL EDMF 3 50 0 – 48 

HRW NSSL NAM NAM -6h WSM6 MYJ 3.2 40 0 – 48 

HRW NSSL -12h NAM NAM -6h WSM6 MYJ 3.2 40 0 – 36 

NAM CONUS Nest NAM NAM Ferrier-Aligo MYJ 3.0 60 0 – 60 
NAM CONUS Nest -
12h 

NAM NAM Ferrier-Aligo MYJ 3.0 60 0 – 48  

 
 
c) NSSL Warn-on-Forecast Experiments 
  

The NSSL Warn-on-Forecast System (WoFS) is a rapidly-updating 36-member, 3-km grid-spacing 
WRF-based ensemble data assimilation and forecast system. The WoFS is initialized every 30 minutes 
and used to produce very short-range (0-6 h) probabilistic forecasts of individual thunderstorms and 
their associated hazardous weather phenomena such as supercell hail, high winds, flash flooding, and 
supercell thunderstorm rotation.  In addition, a dual-resolution hybrid data assimilation and forecast 
system, WoFS-Hybrid is used to produce a single 1.5-km deterministic forecast. The 900-km x 900-km 
daily WoFS domain will target the primary region where severe weather is anticipated. 

The starting point for each day’s experiment will be the operational High-Resolution Rapid 
Refresh Data Assimilation System (HRRRDAS) provided by NCO/GSL and the HRRRE-S (Table 3) provided 
by GSL. A 1-h forecast from the 1400 UTC, 36-member, hourly-cycled HRRRDAS analysis provides the 
initial conditions for both the WoFS and WoFS-Hybrid.  Boundary conditions are provided by 1200 UTC 
HRRRE-S forecasts, initialized from the 1200 UTC HRRRDAS analysis and valid for the period 1500 UTC 
Day 1 – 0300 UTC Day 2.  Table 17 provides a summary of model specifications for HRRRE, WoFS, and 
WoFS-Hybrid, and Figure 1 shows an example of a SPC Day 1 convective outlook and corresponding WoFS 
domain with WSR-88D radars used for data assimilation overlaid.  Further details on WoFS and WoFS-
hybrid are included below. 
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i) WoFS 
  

The 36-member WoFS, run from 1500 UTC Day 1 to 0300 UTC Day 2, cycles its data assimilation 
every 15 minutes by GSI-EnKF assimilation of MRMS radar reflectivity and radial velocity data, cloud 
water path retrievals and clear-sky radiances from the GOES-16 imager, and Oklahoma Mesonet 
observations (when available). Conventional (i.e. prepbufr) observations are also assimilated at 15 
minutes past each hour. All WoFS ensemble members utilize the NSSL 2-moment microphysics 
parameterization and the RUC land-surface model; however, the PBL and radiation physics options are 
varied amongst the ensemble members to increase ensemble spread, given the fact that the EnKF may 
underrepresent model physics errors. Six-hour (three-hour) forecasts are initialized and launched from 
the first 18 ensemble members from the real-time WoFS analyses at the top of each hour (half-hour). 
The first available forecast is launched at 1700 UTC Day 1 and the last at 0300 UTC Day 2.  These forecasts 
will be viewable using the web-based WoFS Forecast Viewer (https://wof.nssl.noaa.gov/realtime/). 
 

ii) WoFS-Hybrid 
 

In parallel with the baseline WoFS, an efficient, weather-adaptive, hybrid three-dimensional 
variational and Ensemble Kalman Filter analysis and forecast system was built and implemented for the 
WoF project (WoFS-Hybrid, Gao et al. 2013; Wang et al. 2019). The system incorporates flow-dependent 
background error covariances estimated from the ensemble forecasts of the baseline WoFS, but provides 
a high-resolution deterministic analysis and forecast component that can be regarded as a complement 
to the baseline WoFS. One can think of this as mirroring the way that other coupled model systems 
attempt to provide one skillful, control forecast member to complement the associated ensemble (e.g., 
GFS and GEFS). 

In the WoFS-Hybrid, WSR-88 radar data, GOES-16 GLM Lightning-Derived Water Vapor, and 
surface observations will be used through rapid DA and forecast cycles (every 15 minutes), though some 
of these data will be used in different formats from those used in WoFS baseline. A forecast launched 
from 1200 UTC with HRRRE member 1 is used to provide boundary conditions. Similarly, a 1-h forecast 
launched from the 1400 UTC HRRRDAS member mean is used to provide initial conditions for the WoFS-
Hybrid analysis. The WoFS-Hybrid system will run from 1500 UTC Day 1 to 0300 UTC Day 2. A 6-h forecast 
will be launched from the analysis each hour from 1700 UTC during this period. The daily domain will be 
the same as WoFS.  
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Table 17 HRRRE, WoFS, and WoFS-Hybrid configuration comparison. 

 HRRRE WoFS WoFS-Hybrid 

Model Version WRF-ARW v3.9+ WRF-ARW v3.9+ WRF-ARW v3.9+ 

Grid Dimensions 1800 x 1060 x 50 300 x 300 x 50 600 x 600 x 50 

Grid Resolution 3 km 3 km 1.5 km 

EnKF cycling 36-mem. w/ GSI-EnKF 
every 1 hr 

36-mem. w/ GSI-EnKF every 
15 min 

36-mem. w/ GSI-EnKF every 
15 min 

Observations - Prepbufr 
conventional 
observations 
- GOES-16 ABI 
radiances 
- MRMS radar 
reflectivity 

- Prepbufr conventional 
observations 
- Oklahoma Mesonet (when 
available) 
- MRMS reflectivity ≥ 15 dBZ; 
radar ‘zeroes’ 
- MRMS radial velocity 
- GOES-16 cloud-water path 
- GOES-16 clear sky radiances 
- GOES-16 atmospheric 
motion vectors 
 

- Prepbufr conventional 
observations 
- Oklahoma Mesonet (when 
available) 
- Raw radar reflectivity ≥ 15 
dBZ; radar ‘zeroes’ 
- Raw radial velocity  
- GOES-16 cloud-water path 
- GOES-16 clear sky radiances 
- GOES-16 atmospheric 
motion vectors 
- GOES-16 GLM data 

Radiation 
LW/SW 

RRTMG/RRTMG Dudhia/RRTM, 
RRTMG/RRTMG 

RRTMG/RRTMG 

Microphysics Thompson (aerosol 
aware) 

NSSL 2-moment NSSL 2-moment 

PBL MYNN YSU, MYJ, or MYNN MYJ 

LSM RUC (Smirnova) RUC (Smirnova) RUC (Smirnova) 

 

 
Figure 1 SPC 1630 UTC issued Day 1 convective outlook (left) and corresponding WoFS grid (right). 
d) Iowa State University (ISU) Machine Learning-based Severe Wind Probabilities 
 

1630 UTC Day 1 Convective Outlook 
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Machine-learning-based tools will be used to derive probabilities that thunderstorm wind 
damage reports were truly due to severe intensity winds (50 knots or more).  It is well-known that there 
are deficiencies in the way that estimated wind values are currently assigned to thunderstorm wind 
damage reports.  Roughly 90% of all reports do not have a measured value, and instead are given an 
estimate, with an artificial spike in the frequency of 50 knot and 52 knot (60 mph) values. The 50 knot 
estimates often appear for reports involving tree damage, implying that many of these reports are not 
actually due to severe intensity winds. 

Several machine learning algorithms were trained on thunderstorm wind damage reports that 
had a measured wind value assigned to them during the 2007-2017 period. Three approaches have been 
used, with one including radar data, one not using radar data, and one using algorithms trained on two 
different regions of the US (along with radar data).  For each of the three approaches, output from two 
different algorithms will be presented.  One will be an average ensemble, while the other will be the best 
single model determined from objective measures in ongoing testing (either gradient boosted machine, 
a generalized linear model, an artificial neural network, or a random forest). The training of these models 
utilized information from the Storm Report database, including textual damage reports, along with SPC 
mesoanalysis output for 31 weather parameters over a 200 x 200 km box centered on the storm reports 
at the nearest hour prior to the report occurrence, population density, elevation, land use data, and in 
some cases, bulk radar statistics within a 66 x 66 km box centered on the storm report every 15 minutes 
within the hour centered on the report time.  Probabilities derived from each of these machine learning 
models will be available.  An example is shown in Figure 2.   

 

 
Figure 2 SPC Day 1 probabilities of damaging wind gusts ( ≥ 50 knots) within 40-km of a point (shaded)).  The color of the 

points indicates the probability that the report was associated with an actual wind gust ≥ 50 knots.   
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e) Calibrated Forecast Products 
 

i. NCAR CAM ML-derived convective mode probabilistic guidance (credit: Ryan Sobash) 
 
The goal of this evaluation is to assess the utility of ML algorithms trained to provide probabilistic 

guidance of simulated storm mode using CAM output. Specifically, two trained ML models will be tested 
in 2021: 1) a supervised ML system that trains a convolutional neural network (CNN) to predict the mode 
of CAM storms using a hand labeled dataset of ~2000 CAM storms (CNN-labeled), and 2) a partially-
supervised CNN system, that is trained with UH and clustered using a Gaussian mixture model (CNN-
GMM). Both systems will be trained to provide probabilistic predictions of supercells, quasi-linear 
convective systems, and disorganized modes in the CAM output. The trained systems will ingest CAM 
storms from both a 3-km, 36-hr, deterministic, 00 UTC-initialized WRF forecast generated locally at 
NCAR, as well as simulated storms present within the 00 UTC HRRRv4. Evaluations will focus on the ability 
of the CNN and CNN-GMM to correctly classify storm modes based on subjective impressions by HWT 
participants, as well as assess differences in the two systems’ predictions when using the local NCAR 
WRF vs. the HRRRv4 forecasts. Example output from CNN-labeled and CNN-GMM is provided in Figs. 3 
& 4.  
 

 
Figure 3 WRF CAM storm objects shaded according to the probability that each storm is a supercell generated by the CNN-

labeled model described in the text (dark red shading indicates higher probability). 
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Figure 4  Summary of CNN-GMM system configuration and associated mode classifications. 
 

 
ii. NCAR ML-derived HRRR-based convective hazard probabilities (credit: Ryan Sobash) 

 
For the 2021 SFE, a neural network [NN] is being used to produce gridded probabilistic 

convective hazard guidance over the contiguous United States using the 00 UTC and 12 UTC HRRRv4. 
The NNs were trained with 42 base diagnostics (Table 18) output from a set of ~300 experimental 00 
UTC HRRRX forecasts for events between 1 October 2019 and 2 December 2020. The diagnostics were 
upscaled to an 80-km grid and each grid point was labeled as a “hit” if a severe weather report occurred 
within a spatial and temporal neighborhood. Storm reports include the three report types, two 
significant report types, and a label if any report occurred. The temporal neighborhood for reports was 
fixed at 2-h, to produce hazard guidance within 4-h windows, while two spatial neighborhoods were 
tested (40 km and 120 km). The configuration details of the trained NNs are provided in Table 19. For 
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comparison, a smoothed mid-level UH-based forecast will also be produced using a UH threshold of 75 
m2/s2 and Gaussian smoother with 𝝈 = 160 km. Evaluation of the forecasts will be facilitated through 
HWT-generated comparisons, as well as a web-based visualization interface available here: 
https://www2.mmm.ucar.edu/projects/ncar_ensemble/camviewer/. An example 4-h all severe hazard 
forecast from 8 April 2020 is provided in Figure 5. 
 
Table 18 The 42 base predictors used to train the NNs. The mean of the environmental and upper-air fields, and the maximum 

of the explicit fields, within each 80-km grid box, was used as input into the NNs. In addition, 132 neighborhood predictors 
were constructed by taking larger spatial and temporal means and maximums of the 15 environmental and 7 explicit 
fields resulting in a final set of 174 predictors used as input into the ML models. 

Base Predictor Type Base Predictor Type 

Forecast Hour Static Surface pressure Environment 
Day of Year Static Most-unstable CAPE x 0-6km bulk wind difference Environment 
Latitude Static Significant tornado parameter Environment 
Longitude Static 700 hPa–500 hPa lapse rate Environment 
Surface-based CAPE Environment Hrly-max 2–5km UH Explicit 
Most-unstable CAPE Environment Hrly-max 0–3km UH Explicit 
Surface-based CIN Environment Hrly-max 1 km relative vorticity Explicit 
Mixed-layer CIN Environment Hrly-max updraft speed below 400 hPa Explicit 
0-6km bulk wind difference Environment Hrly-max downdraft speed below 400 hPa Explicit 
Surface-based lifted condensation level Environment Hourly-max 10-m wind speed Explicit 
0-1km bulk wind difference Environment Hourly precipitation accumulation Explicit 
0-1km storm-relative helicity Environment 925 hPa, 850 hPa, 700 hPa, and 500 hPa zonal 

wind 
Upper-air 

0-3km storm-relative helicity Environment 925 hPa, 850 hPa, 700 hPa, and 500 hPa 
meridional wind 

Upper-air 

2-m temperature Environment 925 hPa, 850 hPa, 700 hPa, and 500 hPa 
temperature 

Upper-air 

2-m dew point temperature Environment 925 hPa, 850 hPa, 700 hPa, and 500 hPa dew point Upper-air 

 
Table 19 Settings used to construct and train the NNs. 

 
 
  
 

 

 

 

 

 

 

 

 

 

Neural Network Hyperparameter Value 
Number of hidden layers 1 
Number of neurons in hidden layer 1024 
Dropout rate 0.1 
Learning rate 0.001 
Number of training epochs 10 
Hidden layer activation function Rectified Linear Unit 
Output layer activation function Sigmoid 
Optimizer Stochastic Gradient Descent 
Loss function Binary Cross-entropy 
Batch size 1024 
Regularization L2 
Batch normalization On 
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Figure 5 Neural network based probabilistic hazard forecast for the 4-h period between 00Z- 04Z 9 April 2020 based on a WRF 

forecast initialized at 00 UTC 8 April 2020. Numbers indicate the probability of any severe hazard occurring within 40-km 
of a grid point. Forecast reflectivity objects > 35 dBZ are overlaid. 

 

 
iii) NSSL ML Random Forest Hazard Probabilities (credit: Eric Loken) 

 
Automated “first guess” Day 1 (1200 UTC – 1200 UTC) forecast hazard probabilities are 

generated using random forests (RFs). Separate RFs predict the probability of tornadoes, severe wind, 
and severe hail, respectively, on an approximately 80 km grid over the CONUS.  

The three RFs use the same set of predictors, which are derived from temporally-aggregated 
(i.e., daily maximum, minimum, or mean) ensemble mean forecast variables from the HREFv2.1. 
Predictors include simulated storm-, index-, and environment-related fields at the point of prediction 
and closest eight 80 km grid points as well as latitude and longitude (Table 20). Each RF is trained on 
ensemble mean HREFv2.1 data and observed SPC storm reports from 653 (non-continuous) days 
between April 2018 and May 2020. Although the RFs are trained on ensemble mean HREFv2.1 data, 
they use ensemble mean HREFv3 data for real-time prediction. The methods are similar to those 
described in Loken et al. (2020).  
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Table 20 RF predictor fields. The temporal aggregation strategy for each variable is noted in parentheses. * denotes a derived 
quantity. 

 
 
 

 
 
iv. Colorado State University (CSU) GEFS-based, ML-derived Hazard Probabilities (credit: Aaron 

Hill) 
 
In the 2021 SFE, the Colorado State University Machine Learning Probabilities (hereafter known 

as CSU-MLP) system is forecasting severe weather hazards through the application of random forests 
(RFs). The CSU-MLP RFs are trained with approximately nine years of daily 0000 UTC initializations from 

Simulated Storm Simulated Environment Simulated Index Lat/Lon 

1 km Reflectivity 
(24h max.) 

0-3 km Storm 
Relative Helicity 

(24h max.) 

MUCAPE 
(24h mean) 

Supercell 
Composite 
Parameter* 
(24h max.) 

Latitude 

Echo Top 
(24h max.) 

0-1 km Storm 
Relative Helicity 

(24h max.) 

MUCIN 
(24h mean) 

Significant 
Tornado 

Parameter* 
(24h max.) 

Longitude 

Upward Vertical 
Velocity 

(24h max.) 

2-m Temperature 
(24h mean) 

SB/MUCAPE 
ratio* 

(24h mean) 

Significant Hail 
Parameter* 
(24h max.) 

- 

Downward Vertical 
Velocity 

(24h min.) 

2-m Dewpoint 
Temperature 
(24h mean) 

700 – 500 hPa 
Lapse Rate* 
(24h mean) 

0-1 km Energy 
Helicity Index*  

(24h max.) 
- 

2-5 km Updraft 
Helicity 

(24h max.) 

2 m, 925 hPa, 850 
hPa, 700 hPa, 500 

hPa Dewpoint 
Depression* 
(24h mean) 

Critical Angle 
Proxy* 

(At time of max. 
STP) 

0-3 km Energy 
Helicity Index* 

(24h max.) 
- 

0-3 km Updraft 
Helicity 

(24h max.) 

10 m – 500 hPa 
wind shear 
magnitude* 
(24h mean) 

Max 10 m Wind 
Speed 

(24h max.) 

Product of 
(MUCAPE) x (10 m 

– 500 hPa wind 
shear magnitude) 

* 
(24h max.) 

- 

Number of Grid 
Points With At Least 

30 dBZ Simulated 
Reflectivity 

(At time of max. 2-5 
km Updraft Helicity 

[if non-zero] or 
Upward Vertical 

Velocity) 

10 m – 925 hPa 
wind shear 
magnitude* 
(24h mean) 

10 m Wind 
Direction 

(At time of 
maximum 10 m 

wind speed) 

Lifted Index 
(24h min.) - 
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the FV3 global ensemble forecast system reforecast dataset (FV3-GEFS/R) along with reports of severe 
weather. For consistency with SPC outlooks as well as SFE activities, RFs are trained separately for 
individual hazards in the day 1 and 2 timeframes, such that separate forecasts are issued for each hazard 
type (example forecast in Figure 6). The forecasts are analogous to operational SPC outlooks making 
them useful as guidance for experimental outlooks generated by SFE participants.  

Predictors from the FV3-GEFS/R correspond to parameters expected to be related to severe 
weather occurrence, including bulk wind shear, convective available potential energy, low-level wind 
and thermodynamics, as well as derived quantities like lifting condensation level; all predictors are listed 
in Table 21. To be consistent across variables and times, all predictors are gridded to a 0.5 degree grid 
for preprocessing. Severe weather reports (i.e., storm data) are similarly gridded over the training 
period, where each point is labeled a 0, 1, or 2 for the occurrence of no severe report, a severe report, 
and a significant severe report. For every gridded event of severe weather across the contiguous United 
States, predictors are selected around the training point with spatiotemporal dimensions to capture any 
pre-existing dynamical model biases from the FV3-GEFS/R, which allows the RFs to learn predictor biases 
during training. Spatially, predictors are gathered within a latitudinal and longitudinal radius (set to 3 in 
these models) around the training point so each grid point represents a separate predictor. Temporally, 
this procedure is followed at each model output time over the forecast window; the new FV3-GEFS/R 
has 3-hourly output through day 10. For example, during the day-1 period, predictors are gathered 3-
hourly from forecast hour 12 through hour 36, totaling nine predictor times. The predictor assembly 
results in approximately 6,500 predictors for each training point in which to build the RFs. 
 
 

Table 21 Short-hand notation (left) and long description (right) of predictor variables used to train CSU-MLP severe weather 
RFs. Derived variables from FV3-GEFS/R output are denoted with an asterisk (*). 

Predictor Acronym Predictor Description 
APCP 3-hourly accumulated precipitation 
CAPE Convective available potential energy 
CIN Convective inhibition 
U10 10 m latitudinal wind speed 
V10 10 m longitudinal wind speed 
T2M 2 m temperature 
Q2M 2 m specific humidity 
MSLP Mean sea level pressure 
PWAT Precipitable water 
UV10 10 m wind speed 
SRH03 0 - 3km storm relative helicity 
SHEAR850* 0 - 850 hPa bulk wind shear 
SHEAR500* 0 - 500 hPa bulk wind shear 
ZLCL* Height of lifting condensation level 
RH2M* 2 m relative humidity 
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Figure 6 Probabilistic day-2 forecasts of (upper left) tornado, (upper right) hail, and (bottom left) wind hazards valid 1200 - 

1200 UTC ending 26 March 2021. Hatched contours represent a 10% probability of significant severe hazards. 
 
 

v. HREF/SREF Calibrated Severe Weather Probabilities (credit: Israel Jirak) 
 
Probabilities valid over 4-h time windows are produced using the following procedure.  At every 

grid-point for the valid forecast hour, two probabilities are paired: (1) Probability of UH ≥ 75/100/200 
m2/s2 for the ARW/NMMB/FV3 cores over the previous 4 h (from the HREF), (2) Probability of 
environmental field(s) meeting a threshold over the previous 4 h (from the SREF; see Table 22 below).  
The historical frequency of a hazard report occurring within 25 miles of that grid point and within the 4 
h period for that forecast pair of probabilities is substituted as the 4 h calibrated hazard probability.   
 
Table 22 Environmental fields for each hazard used in the HREF/SREF calibrated probabilities. 

Hazard SREF Conditions 

Tornado STP ≥ 1 

Hail MUCAPE ≥ 1000 J/kg, Eff. Shear ≥ 20 kt 

Wind MUCAPE ≥ 250 J/kg, Eff. Shear ≥ 20 kt 

 
To construct 24 h time window probabilities, the 4 h hazard probability forecasts that cover the 

24 h convective day are used (i.e., 1200 – 1200 UTC).  At every grid point, the cumulative sum of the 4 
h probabilities and the maximum 4 h probability are paired.  The historical frequency of a hazard report 
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occurring within 25 miles of that grid point and within the 24 h period for those 4 h calibrated hazard 
probabilities is substituted as the 24 h calibrated hazard probability.   
 
 
 vi. STP-based tornado probabilities (STP Cal Circle; credit: Burkely Gallo) 
 
 Automated “first guess” tornado probabilities valid over 24 h periods are produced using the 
following procedure:  A distribution of the significant tornado parameter (STP) is formed for each grid 
point from points where UH in the following hour exceeds the 99.985th percentile (within each HREF 
member's climatology) within a 40 km radius. The 10th percentile of STP from that distribution is then 
assigned to each point at each hour, and then the maximum daily STP value for each point is used to 
assign a probability based on the climatological frequency of a tornado given a right-moving supercell 
and an STP value for each ensemble member. The mean probability at each point is taken across the 
members, and then a Gaussian smoother with σ = 50 km is applied.  A similar procedure is used to derive 
tornado probabilities valid over 4 h time periods.  For further details, see Gallo et al. (2018). 
 
 
 vii. STP-based tornado probabilities (STP Cal Inflow; credit: David Jahn)  
 
 This alternative approach for deriving 24-h tornado probabilities follows the STP Cal Circle 
methodology except uses the 50th percentile of the STP distribution that is formulated from points 
within the inflow region relative to a point, rather than over the surrounding 40-km circular region.   The 
inflow area is defined as a quadrant region of 40-km radius that is centrally oriented along the direction 
of the environmental wind at 1 km AGL. 
 
 
 viii. STP and UH ML-based tornado probabilities (ML NN; credit David Jahn) 
 
 Tornado probabilities are calculated with a ML model using as predictors the 10th, 50th, and 
90th percentiles from the STP distributions as described above for the STP Cal Inflow product.   
Predictors also include the 96th, 98th, and 99th values of the UH distribution from a 40-km circular 
region about a given point as well as the UH (2-5 km) and UH (0-3 km) values at the same point.  This 
ML system is unique because it uses training data of spatial resolution consistent with the native HREF 
3-km grid as opposed to a 40-km or 80-km grid used by other ML methods.  This system trains separate 
neural network classification models for each of the 10 HREF ensemble members and combines the 
results using a neural network regression technique. 
 
 
 ix. ML-based, Random Forest Hail Probabilities (credit: Amanda Burke) 

 
RF hail forecast products are produced hourly, from 12-36 h of forecast time, for the HREF 

ensemble.  The products predict probability of severe hail (diameter > 1") and probability of significant-
severe hail (diameter > 2").  In addition, the products provide an estimate of maximum predicted hail 
size to be used in the display of the products during the HWT SFE.   
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The RF hail forecast products use a multi-step machine learning process.  First, storm objects are 
identified within the HREF ensemble forecast by examining the maximum updraft velocity.  For each 
storm object, input data are extracted from approximately 25 2-D input fields in the HREF forecast, 
including a mixture of storm-related variables (e.g., hourly maximum radar reflectivity) and 
environmental variables (e.g. 500 hPa wind, 850 hPa dewpoint temperature).  These statistics are used 
to predict hail associated with the storm objects using a multi-step machine learning process. 
  In the first step, a random forest classification model predicts whether each storm object will 
produce hail.  Those storm objects predicted to produce hail move to the second step--a random forest 
regression model which predicts the distribution of hail diameters within each hail-producing storm 
object.  Finally, an isotonic regression step is applied to calibrate output hail probabilities to those 
estimated from radar-observed MESH in training data. This process is performed for each member of 
the HREF, and the resulting ensemble of ML hail predictions is used to generate probabilistic forecast 
products. 

The training data used include HREF forecasts and MRMS MESH observations from the spring and 
summer months of 2017-2020.  Temporal weighting is applied to more heavily weight hail events 
occurring during the month of May to account for seasonal variation in hail (this type of temporal 
weighting has been found to increase forecast skill).   
 
 
 x. ML-based, Deep Learning Hail Probabilities (credit: Nate Snook) 
 

The UNET hail forecasts are an alternate kind of machine learning hail forecast product produced 
using the HREF.  The UNET forecast products produce hourly predictions of maximum hail size for 12-36 
h of forecast time.  As for the RF hail forecast products, a separate machine learning model is run for 
each member, and the resulting ensemble of machine learning forecasts is used to generate the final 
forecast products. 

Unlike the RF hail forecast products, which use a random forest machine learning architecture 
which relies upon an ensemble of decision trees, the UNET hail forecast products use the recently-
developed UNET architecture.  UNET is a deep learning architecture which uses a combination of 
convolution, pooling, and upscaling layers to generate point-by-point predictions (as opposed to the 
object-based predictions of the RF hail forecast products).  The UNET architecture allows the model to 
learn to identify structures over a range of spatial scales, as well as to predict areas of potential hail 
threat outside of areas where the HREF ensemble predicted storms (because UNET does not rely upon 
storm objects). 

To produce UNET hail forecasts, a set of approximately 10 2-D input fields are used from the HREF 
ensemble forecasts, focusing primarily on environmental fields (including 500 hPa and 850 hPa wind, 
temperature, and moisture).  As with the RF hail forecast products, the UNET products are trained using 
2017-2020 spring and summer HREF ensemble forecast data and MRMS MESH observations.   

Input data from the HREF are considered in overlapping 64 by 64 grid-point patches (using 8 grid-
points of overlap to avoid discontinuities at patch boundaries).  These patches are stitched together to 
produce the final CONUS-wide forecast product.  This is the first year that UNET forecast products have 
been produced; as such they have not been refined and calibrated as extensively as the RF hail forecast 
products have been. 
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 xi. SPC Timing Guidance (credit: Israel Jirak) 
 
 SPC Timing Guidance products (valid over 4 h time windows) are generated for tornadoes, wind, 
and hail using a temporal disaggregation method with HREF/SREF calibrated guidance as applied to the 
operationally issued SPC convective outlooks at 0600 and 1300 UTC (Jirak et al. 2012, 2020).  Thus, they 
are a blend of the human forecast and the first-guess calibrated guidance.   
 
 xii. Machine-Learning calibrated WoFS probabilities (credit: Monte Flora) 
 
 A series of machine learning (ML) models are being developed to provide rapidly updating 
probabilistic guidance to human forecasters for short-term (e.g., 0-3 h) severe weather forecasts. We 
generated the feature inputs into the ML models from Warn-on-Forecast System (WoFS) forecasts. 
Rather than producing a gridded ML product as with next-day (12-36 hr) convection-allowing model 
(CAM) products (e.g., Burke et al. 2019; Loken et al. 2020; Sobash et al. 2020; Hill et al. 2020), the current 
method produces object-based predictions that are interpreted in an event-based framework—What is 
the likelihood that a given storm will produce a hazard—as opposed to spatial probabilities (what is the 
likelihood of a hazard occurring within some prescribed distance of a point?; Fig. 1). The objects in this 
case are ensemble storm tracks which—conceptually—are regions bounded by the ensemble forecast 
uncertainty in storm location (determined by 30-min updraft tracks). An ensemble storm track can be 
composed of a single ensemble member’s storm track or some combination of up to all 18 ensemble 
members. We trained random forests, gradient-boosted trees, and logistic regression algorithms to 
predict which WoFS 30-min ensemble storm tracks will overlap a tornado, severe hail, and/or severe 
wind report. For the SFE, we will be solely highlighting the logistic regression model as it performed the 
best on an independent dataset. 
 

 
Figure 7 Illustration of the distinction between event and spatial probabilities (Fig. 2 of Flora et al. 2019). 

 
The feature inputs were based on intra-storm and environmental variables from the WoFS and 

morphological variables describing the storm objects (Table 23).   
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Table 23 Input variables from the WoFS. The asterisk (*) refers to negatively oriented variables. Values in the parentheses 
indicate those variables that are extracted from different vertical levels or layers.  

 
 

From these variables, we computed ensemble statistics as input features (more details in Flora 
et al. 2021). We show an example hail forecast from the logistic regression model in Fig. 8.  Each object 
is a composite of ensemble member forecast tracks of a storm, colored according to the probability of 
the storm producing a severe hail report. It is best to think of these objects like warning polygons—most 
likely the event would occur within these bounds—, but with an associated probability of occurrence. 
For example, the ML model predicts there is a nearly 50% chance that the supercell over the Western 
Red River Valley will produce severe hail in the next hour. 
 

 
Figure 8 Example forecast from the severe-hail-based logistic regression. 
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3. SFE 2021 Core Interests and Daily Activities 
 
 2021 SFE activities will occur from 9am-4pm CDT, with a lunch break from 12:30-2pm CDT.  
Tables 24 and 25 provide a schedule for Monday, and Tuesday-Friday, respectively. Further details are 
provided in subsequent sections. 
 
Table 24 Schedule for Monday.  

Time (CDT) R2O Group Innovation Group 
9:00 AM – 
9:45 AM  

Welcome and Introductions 
Israel Jirak & Participants 

9:45 AM – 
10:30 AM 

HWT SFE Scientific Objectives and Goals 
Israel Jirak & Adam Clark 

10:30 AM - 
11:00 AM 

Break 
Fill out IRB Consent Form and distribute survey link 

11:00 AM - 
11:15 AM 

Conditional Intensity Forecasting Overview 
Israel Jirak 

11:15 AM – 
11:30 AM 

Weather Briefing 
David Imy 

11:30 AM – 
12:30 PM 

Issue Day 1 Hazards Coverage and 
Conditional Intensity Forecasts (2 groups)  

Issue Day 2 Hazards Coverage and 
Conditional Intensity Forecasts (2 groups) 

12z HREF 12z GSL RRFS No CAMs  All data (incl. CAMs) 
12:30 PM – 
2:00 PM 

Lunch/Break 

2:00 PM – 
2:15 PM 

Update on Today’s Weather 
David Imy 

2:15 PM – 
3:15 PM 

Issue MD Product Issue 1-h outlooks (22-23, 23-00Z) 
WoFS & obs WoFS No WoFS 

3:15 PM – 
4:00 PM 

Update Day 1 Outlook Issue 1-h outlooks (22-23, 23-00, 00-01Z) 
WoFS & other guidance WoFS No WoFS 
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Table 25 Schedule for Tuesday – Friday.  

Time (CDT) R2O Group Innovation Group 
9:00 AM – 
9:15 AM  

Overview of Yesterday’s Severe Weather 
David Imy 

9:15 AM – 
11:00 AM 

Evaluation Orientation, Individual Working Time, and Discussion 

Group A: Calibrated 
Guidance 

Group B: Deterministic 
CAM 

Group C: CAM 
Ensembles 

Group D: Medley 

11:00 AM - 
11:15 AM 

Break  

11:15 AM – 
11:30 AM 

Weather Briefing 
David Imy 

11:30 AM – 
12:30 PM 

Issue Day 1 Hazards Coverage and Conditional 
Intensity Forecasts (2 groups)  

Issue Day 2 Hazards Coverage and 
Conditional Intensity Forecasts (2 groups) 

12z HREF 12z GSL RRFS No CAMs  All data (incl. 
CAMs) 

12:30 PM – 
2:00 PM 

Lunch/Break 

2:00 PM – 
2:15 PM 

Update on Today’s Weather 
David Imy 

2:15 PM – 
3:00 PM 

Issue MD Product Issue 1-h outlooks (22-23, 23-00Z) 
WoFS & obs WoFS No WoFS 

3:00 PM – 
4:00 PM 

Update Day 1 Outlook Issue 1-h outlooks (22-23, 23-00, 00-01Z) 
WoFS & other guidance WoFS No WoFS 

 
 
a. Formal Evaluation Activities 
 
 SFE 2021 will feature one period of formal evaluation from 9:15-11:00am CDT Tuesday-Friday.    
The evaluations will be done virtually and involve comparisons of different ensemble diagnostics, CLUE 
ensemble subsets, HREF, and WoFS.  Additionally, the evaluations of yesterday’s experimental forecast 
products will be conducted during this time.  Participants will be split into Groups A, B, C, & D, which 
will each conduct a separate set of evaluations.  In each group, from 9:15-9:25am CDT, a short tutorial 
will be presented to instruct and familiarize participants with the evaluations in their respective groups, 
and then from 9:25-10:15am CDT, participants will conduct the evaluations independently while 
facilitator remain available for questions.  Finally, from 10:15-10:45am CDT, each group will reconvene 
in a virtual meeting to discuss various aspects of the just-completed evaluations (e.g., interesting 
observations, notable differences in performance, etc.), and from 10:45-11am CDT the evaluations of 
yesterday’s forecasts will be discussed.  The four different sets of evaluations are summarized below: 
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Group A – Calibrated Guidance 
 
A1. Calibrated Guidance 
 

a. Day 2 Calibrated Tornado Guidance 
 
 Four different methods for deriving calibrated Day 2 tornado guidance are subjectively rated.  
These methods were described in the previous section and include: (1) HREF/SREF calibrated (12Z), (2) 
CSU MLP (00Z), (3) HRRR NCAR, and (4) STP Cal Circle.    
 

b. Day 1 Calibrated Tornado Guidance 
 
The same methods as in the Day 2 evaluation are rated for Day 1, except for STP Cal Circle. 

 
c. 00Z HREF 24-h Calibrated Tornado Guidance 
 
Five different methods based on HREF for generating 24-h calibrated tornado guidance are 

subjectively evaluated: (1) HREF/SREF Calibrated, (2) STP Cal Circle, (3) STP Cal Inflow, (4) ML Random 
Forest, and (5) ML NN. 
 

d. 00Z HREF 4-h Calibrated Tornado Guidance 
 
Four different sets of calibrated tornado guidance valid in 4-h time windows are subjectively 

rated.  This guidance includes: (1) HREF/SREF Calibrated, (2) STP Cal Circle, (3) 06Z Day 1 SPC Timing 
Guidance, and (4) 12Z Day 1 SPC Timing Guidance.   
 

e. Day 2 Calibrated Hail Guidance 
 
 Three different methods for deriving calibrated Day 2 hail guidance are subjectively rated.  These 
methods include: (1) HREF/SREF Calibrated (12Z), (2) CSU MLP (00Z), and (3) HRRR NCAR (12Z).   
 

f. Day 1 Calibrated Hail Guidance 
 
 The same methods as in the Day 2 evaluation are rated. 
 

g. 00Z HREF 24-h Calibrated Hail Guidance 
 
Four different methods based on HREF for generating 24-h calibrated hail guidance are 

subjectively evaluated: (1) HREF/SREF Calibrated, (2) ML Deep Learning, (3) ML Random Forest (Loken), 
and (4) ML Random Forest (Burke).    
 

h. 00Z HREF 4-h Calibrated Hail Guidance 
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 Five different sets of calibrated hail guidance valid in 4-h time windows are subjectively rated.  
This guidance includes: (1) HREF/SREF Calibrated, (2) ML Deep Learning (Snook), (3) ML Random Forest 
(Burke), (4) 06Z Day 1 SPC Timing Guidance, and (5) 13Z Day 1 SPC Timing Guidance.   
 

i. Day 2 Calibrated Wind Guidance 
 
Three different methods for deriving calibrated Day 2 wind guidance are subjectively rated.  

These methods include: (1) HREF/SREF Calibrated (12Z), (2) CSU MLP (00Z), and (3) HRRR NCAR (12Z).   
 

j. Day 1 Calibrated Wind Guidance 
 

 The same methods as in the Day 2 evaluation are rated. 
 

k. 00Z HREF 24-h Calibrated Wind Guidance 
 
Two methods based on HREF for generated 24-h calibrated wind guidance are subjectively 

evaluated: (1) HREF/SREF Calibrated, and (2) ML Random Forest (Loken).   
 

l. 00Z HREF 4-h Calibrated Wind Guidance 
 
Three different sets of calibrated wind guidance valid in 4-h time windows are subjectively rated.  

This guidance includes: (1) HREF/SREF Calibrated, (2) 06Z Day 1 SPC Timing Guidance, and (3) 12Z Day 1 
SPC Timing Guidance.   
 
Primary Science Question: What are the best approaches and techniques to develop calibrated hazard 
probabilities?   
 
Group B – Deterministic CAMs 
 
B1. CLUE: Deterministic Flagships 
 

This activity will focus on assigning ratings to gauge the skill and utility of the primary 
deterministic CAMs provided by each SFE collaborator – GFDL (GFDL FV3), NSSL (NSSL FV3-LAM), EMC 
(EMC FV3-LAM), and GSL (GSL FV3-LAM). These runs will be compared to the operational HRRRv4, which 
was developed by GSL.   Particular attention will be given to simulated storm structure, convective 
evolution, and location/coverage of storms. Storm surrogate fields, like hourly maximum updraft 
helicity, will also be examined to gauge their utility for forecasting severe storms.    

 
Primary Science Question: How do the deterministic CAM runs using the FV3 dynamic core compare to 
the operational standard for convective forecasting (i.e., WRF-ARW-based HRRRv4)? 
 
B2. CLUE: FV3-LAM Expanded North American Domain 
 
 a. Day 2 
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 Two pairs of runs are evaluated for the Day 2 forecast period (i.e., hours 36-60) that are similar 
except one uses a CONUS domain (EMC FV3-LAM & GSL FV3-LAM) and the other uses an expanded 
North American domain (EMC FV3-LAMX & GSL FV3-LAM-NA), which is planned for future versions of 
the RRFS.  Particular attention will be given to simulated storm structure, convective evolution, and 
location/coverage of storms. Storm surrogate fields, like hourly maximum updraft helicity, will also be 
examined to gauge their utility for forecasting severe storms. 
 
 b. Day 1 
 
 This evaluation is the same as B2.i., except for the Day 1 forecast period.    
  
Primary Science Question:  Are there benefits, or noticeable differences, in FV3-LAM forecasts at Days 1 
& 2 when using an expanded North American domain (i.e., lateral boundary conditions farther from 
forecast area of interest) compared to a CONUS domain? 
 
B3. CLUE: FV3-LAM Data Assimilation 
 
 Five deterministic FV3-LAM configurations are examined that incorporate different data 
assimilation strategies: (1) EMC FV3-LAM, (2) EMC FV3-LAMDAX, (3) GSL FV3-LAM, (4) MAP RRFS 
Control, and (5) MAP RRFS VTS Control.  The EMC FV3-LAM and EMC FV3-LAMDAX are similarly 
configured, except EMC FV3-LAM uses a cold start while EMC FV3-LAMDAX is initialized from a 6-h data 
assimilation cycle with hourly analysis updates from RAP observations (the DA cycle is cold-started from 
a 6-h GDAS forecast).  The GSL FV3-LAM uses hourly-cycled data assimilation using a hybrid 3DEnVar 
(GDAS ensemble) analysis and periodically drawing initial and boundary conditions from a 13-km North 
American FV3-LAM hourly-cycled configuration using the same RAP/HRRR physics suite.  Finally, the two 
MAP runs both use hybrid 3DEnVAR, but MAP RRFS VTS Control uses valid time shifting while MAP RRFS 
Control does not use valid time shifting.  Particular attention will be given to simulated storm structure, 
convective evolution, and location/coverage of storms, especially at the beginning of the forecast to 
directly assess the impact of the data assimilation. Storm surrogate fields, like hourly maximum updraft 
helicity, will also be examined to gauge their utility for forecasting severe storms. 
 
Primary Science Question: What are the optimal data assimilation strategies in FV3-LAM configurations 
for convective weather forecasting?   
 
B4. CLUE: FV3 Physics Suites 
 
 Three different physics suites are used in the membership of the RRFS Cloud ensemble.  Since 
each suite uses the same set of ICs/LBCs, this allows a controlled comparison in which we can evaluate 
the impact of the differences in physics.  Members 1, 4, & 7 of the RRFS Cloud ensemble are compared, 
which use Thompson/MYNN, GFDL/TKE-EDMF, and NSSL/hybrid-EDMF for the microphysics/PBL 
schemes, respectively.  Particular attention will be given to simulated storm structure, convective 
evolution, and location/coverage of storms.  Storm surrogate fields, like hourly maximum updraft 
helicity, will also be examined to gauge their utility for forecasting severe storms. 
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Primary Science Question: What is the optimal physics package in FV3-LAM for convective weather 
forecasting? 
 
B5. CLUE: FV3 Stochastic Physics 
 
 Within each physics package of the RRFS Cloud membership, three different strategies for 
stochastic physics perturbations are implemented: (1) no stochastic perturbations, (2) SPPT 
perturbations, and (3) SPPT/SHUM/SKEB perturbations.  These perturbation strategies correspond to 
RRFS Cloud members 1, 2, & 3, respectively.  Particular attention will be given to simulated storm 
structure, convective evolution, and location/coverage of storms.  Storm surrogate fields, like hourly 
maximum updraft helicity, will also be examined to gauge their utility for forecasting severe storms.  
Note, this is not technically a “controlled” comparison since these members also have differences in 
their ICs/LBCs, but the IC/LBCs for members 2 & 3 (initialized from GEFS members) should be statistically 
indistinguishable over a sufficiently large sample.   
 
Primary Science Question:  Are there obvious differences and/or advantages/disadvantages that can be 
attributed to the different stochastic physics perturbation strategies? 
 
Group C – CAM Ensembles 
 
C1. CLUE: 00Z CAM Ensembles 
 

This evaluation will compare four 00Z initialized, FV3-LAM CAM ensembles to HREFv3.  
Specifically, (1) GSL RRFS, (2) RRFS Cloud, (3) MAP RRFS, and (4) MAP RRFS VTS will be compared.  Each 
of these datasets has a unique configuration strategy, so the primary goal is to find which strategy is 
optimal and how it performs relative to HREFv3.   
 
Primary Science Question: What are the best ensemble configuration strategies for FV3-LAM based CAM 
ensembles, and how do they compare to HREFv3? 
 
C2. CLUE: 12Z CAM Ensembles 
 
 Three 12Z initialized ensembles are compared to HREFv3: (1) GSL RRFS, (2) HRRRE-S, and (3) 
HRRRE-M.   
 
Primary Science Question: How do stochastic physics and multi-physics approaches compare in the 
HRRRE, and what effect does that choice have on their performance relative to the HREFv3 and the GSL 
RRFS? 
 
C3. Hourly Updating CAM Ensembles 
 
 In this evaluation, various strategies for producing CAM ensemble guidance after 12Z, but before 
00Z, are examined.  Specifically, five different strategies are compared to 12Z HREF: (1) 12Z HRRR-TL, 
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(2) 15Z HRRR-TL, (3) 18Z HRRR-TL, (4) 18Z HREF/HRRR-TL Blend, and (5) 18Z Error-Weighted Blend.  The 
HRRR-TL comprises the four most recent hourly runs of the HRRR, weighted equally.  In the time-based 
blend, the HREF's weight is the ratio of the HRRR-TL forecast's lead time to that of the HREF forecast, so 
that each new run of the HRRR-TL receives linearly increasing weight as the HREF ages.  For example, 
the 18Z blend valid at 00Z is 50% 12Z HREF, 50% 18Z HRRR-TL.  The error-based blend combines the 10 
HREF members and 4 HRRR-TL members into a single ensemble.  Each member receives weight based 
on the sum of its normalized domain-wide RMSEs in 2-m temperature, 2-m dewpoint, and 10-m wind 
component fields using RTMA at the blend initialization time as truth.  The member with the largest 
errors on the SFE domain receives no weight and the member with the smallest errors receives 
maximum weight.  This is motivated by a set of test cases in which these short-term errors were weakly 
negatively correlated with convective forecast skill at later times. 
 
Primary Science Question: Are there optimal ways to produce updated and improved CAM ensemble 
guidance within the Day 1 forecast period in between HREF updates (i.e., 15Z to 03Z)? 
 
C4. CLUE: VTS DA 
 
 In this evaluation, ensembles initialized at 2100 and 0000 UTC with and without the valid-time-
shifting data assimilation strategy are compared for the first 12 hours of the forecasts.   
 
Primary Science Question: Does the valid-time-shifting data assimilation strategy improve ensemble 
performance within the first 12 hours of the forecast? 
 
C5. WoFS evaluations 
 
 a. WoFS vs. HRRR-TL  
 
WoFS initializations at 2100 and 2300 UTC are compared to HRRR-TL ensembles based at the same 
times.    
 
Primary Science Question: How does the WoFS perform relative to systems that are currently available 
operationally? 
 

b. Deterministic WoFS 
 
 These comparisons will examine the WoFS deterministic 1.5 km grid-spacing hybrid data 
assimilation runs initialized at 2100 and 2300 UTC, which will be compared to a random member from 
the 3-km baseline WoFS configuration with the same physic configuration.  The WoFS forecast viewer 
will be used for additional comparisons between the WoFS and WoFS-Hybrid systems.   
 
Primary Science Questions: Does the WoFS-Hybrid, on average, perform better than the individual 
members of WoFS?  Does the WoFS-Hybrid provide additional value relative to the WoFS? 
 

c. Machine-Learning calibrated WoFS probabilities 
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 Hazard probabilities are derived using predictors from the WoFS output.  The activity will 
examine the utility of these probabilities, and participants will be given the opportunity to comment 
on the visualization strategy within the WoFS web-viewer.   
 
Primary Science Question: Do WoFS-derived, machine-learning calibrated hazard probabilities provide 
value on top of the already available WoFS guidance products? 
 
 
Group D – Medley 
 
D1. ISU ML Severe Wind Probabilities 
 
 An evaluation will be conducted of six different techniques (i.e., two ML models, with and without 
radar data, and regional or CONUS training) to produce ML-based probabilities to estimate the likelihood 
that a damaging wind report was caused by wind ≥ 50 knots.  The evaluations will focus on perceived 
usefulness of the output via comparison with SPC forecasts of severe wind probability, best methods to 
display the information, and subjective evaluation of three different ML techniques.  The evaluation will 
be conducted on an external web page hosted by Iowa State University.   
 
Primary Science Question: Can machine-learning approaches provide useful information regarding the 
likelihood of wind damage reports being associated with gusts ≥ 50 knots? 
 
D2. NCAR ML Mode 
   

This evaluation will assess the utility of ML algorithms trained to provide probabilistic guidance 
of simulated storm mode using CAM model output. Specifically, two trained ML models will be tested: 
1) a supervised ML system that trains a convolutional neural network (CNN) to predict the mode of CAM 
storms using a hand labeled dataset of ~2000 CAM storms (CNN-labeled), and 2) a partially-supervised 
CNN system, that is trained with UH and clustered using a Gaussian mixture model (CNN-GMM). 
Evaluations will focus on the ability of the CNN and CNN-GMM to correctly classify storm modes based 
on subjective impressions by HWT participants, as well as assess differences in the two systems’ 
predictions when using the local NCAR WRF vs. the HRRRv4 forecasts. The evaluation will be conducted 
on an external web page hosted by NCAR.  

 
Primary Science Question: Can machine-learning be used to provide automated guidance on convective 
mode, and which machine-learning techniques work best? 
 
D3. Mesoscale Analysis 
 
 a. Background 
 
 Mesoscale analyses using the HRRRv4 as background (EMC 3D-RTMA) are compared to analyses 
using the GSL FV3-LAM as background (GSL 3D-RTMA).  Both systems use background error covariance 



 

 
35 

(BEC) information from the GDAS.  In addition, both systems are upscaled to a 40-km grid for 
comparisons to the SPC surface objective analysis (sfcOA).  The goal is to assess the utility of these 
analysis systems for situational awareness and short-term forecasting for convective-weather scenarios. 
 
 b. DA Frequency 
 
 Two mesoscale analysis systems that use different data assimilation frequencies are compared: 
(1) EMC 3D-RTMA with GDAS for BEC, and (2) EMC 15-min 3D-RTMA with HRRRDAS for BEC.   
  
 c. Storm Scale 
 
 WoFS-based “analyses” (actually 15-minute maximum forecasts) of 10-m and 80-m wind are 
compared to preliminary local storm reports, including gust measurements and estimates. 
 
Primary Science Question: What are the optimal methods for producing quality mesoscale analyses for 
convective forecasting applications and can a high resolution, rapidly updating ensemble DA system 
serve as a verification source for severe winds?   
 
D4. GEFS vs. SREF 
 
 a. Day 3 
 
 Several sets of environmental parameters (2-m Td, CAPE, shear) and ensemble fields (mean, 
spread, and probabilities), as well as calibrated thunder and severe thunderstorm guidance are 
compared between the GEFS and SREF systems for the Day 3 forecast period.  As NOAA moves toward 
a more unified model production suite, the SREF is planned for retirement, but the GEFS must be able 
to demonstrate forecast skill comparable or better than the SREF. 
 
 b. Day 2 
 
 This evaluation is the same as for Day 3, but for the Day 2 forecast period.  
 
Primary Science Question: Can the GEFS provide similar or improved forecast quality as the SREF during 
the Day 2 & 3 forecast period for severe weather applications?   
 
b. Forecast Products and Activities 
 
 There will be two periods of experimental forecast activities during SFE 2021.  The first will occur 
from 11:30am – 12:30pm CDT and will focus on providing individual hazard guidance, as well as more 
precise information on the intensity of specific hazards.  As in previous years, we will split the 
participants into two groups, with those in the R2O group issuing products for Day 1 and those in the 
Innovation Group issuing products for Day 2.  The experimental forecasts will cover a limited-area 
domain typically covering the primary severe threat area with a center-point selected base on existing 
SPC outlooks and/or where interesting convective forecast challenges are expected.   
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In both groups, the forecasts will be done as a group activity.  The individual hazard forecasts 
will mimic the SPC operational Day 1 & 2 Convective Outlooks by producing individual probabilistic 
coverage forecasts of large hail, damaging wind, and tornadoes within 25 miles (40 km) of a point.  The 
Day 1 outlooks will cover the period 1800 UTC to 1200 UTC the next day, while the Day 2 outlooks will 
cover the following 1200 – 1200 UTC period.  Additionally, each group will issue conditional intensity 
forecasts of tornado, wind, and hail, in which areas are delineated with reports that are expected to 
follow a “normal”, “hatched”, or “double-hatched” distribution.  These conditional intensity forecasts 
are similar to those issued during SFE 2020.  When generating Day 1 Convective Outlooks, SPC 
forecasters draw probabilities that represent the chance of each hazard occurring within 25 miles of a 
point. Forecasters can also delineate “hatched” areas, which represent regions with a 10% chance or 
greater of significant severe weather (EF-2 or greater tornadoes, winds ≥ 65 kts, or hail ≥ 2-in.) within 
25 miles of a point. Research by the SPC has shown that, as the forecast coverage of a hazard increases, 
the expected intensity of the verifying reports also increases. For instance, on days where a “hatched” 
area is drawn and the maximum tornado coverage is 10 or 15%, 17% of the observed tornadoes are 
significant. When a “hatched” area is drawn and the maximum tornado coverage is 30% or higher, 32% 
of observed tornadoes are significant. In other words, as the forecast tornado coverage increases, the 
observed tornadoes grow progressively more intense, regardless of how many tornadoes occur; 
preliminary results show a similar pattern for wind and hail. Therefore, current coverage forecasts 
include intensity information that is not explicitly communicated to users, so coverage forecasts and 
intensity forecasts could be better labeled/communicated. These results have been used to identify 
three conditional intensity probability distributions that can be forecast via examination of the 
atmospheric environment: “normal”, “hatched”, and “double-hatched”. In plain language, “normal” 
refers to a typical severe weather day, where significant severe weather is unlikely, “hatched” areas 
indicate where significant severe weather is possible, and “double-hatched” areas indicate where high 
impact significant severe weather is expected.   

Within the R2O Group, one sub-group will use 12Z HREF guidance for issuing their Day 1 
individual hazard and conditional intensity forecasts, while another sub-group will use 12Z GSL RRFS 
guidance.   Within the Innovation Group, one sub-group will use only non-CAM-based guidance for their 
Day 2 forecasts, while another sub-group will use all available CAM and non-CAM guidance available 
within the Day 2 time period.   

The second period of experimental forecasting activities will occur during the 2-4pm CDT time 
period.  In the R2O group, the 2:15-3pm CDT time period will be devoted to an activity in which each 
participant will issue their own Mesoscale Discussion (MD) Product using WoFS and other available CAM 
guidance within the SFE Drawing Tool.  Then, during the 3-4pm time period, each R2O group participant 
will use WoFS and other available guidance to update the Day 1 individual hazard coverage and 
conditional intensity forecasts for the period 2100 – 1200 UTC.   

During the 2:15-4pm CDT time period in the Innovation Group, participants will generate severe 
hazard probabilities valid over 1-h time windows covering 2200-2300 UTC, 2300-0000 UTC, and 0000-
0100 UTC.  Two initial forecasts will be generated during the 2:15-3:15pm period, which will cover the 
22-23Z and 23-00Z time windows.  Then, during the 3:15-4pm period, the 22-23Z and 23-00Z periods 
will be updated, and one more outlook covering 00-01Z will be generated. For both sets of initial and 
final forecasts, two forecasters will use all available datasets including WoFS (Forecaster WOF 1 & 2), 
while two other forecasters will use all available datasets except for WoFS (Forecaster NOWOF 1 & 2).  
The No-WoFS forecasters will use the SFE viewer 
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(https://hwt.nssl.noaa.gov/sfe_viewer/2021/forecast_tool) to generate forecasts, while the WoFS 
forecasters will use the WoFS viewer (https://wof.nssl.noaa.gov/realtime/). Forecasters using the SFE 
viewer will have access to the WoFS domain bounds, so that the forecast domain will be the same 
between the two groups. Additionally, two other groups of non-expert forecasters will issue forecasts 
with and without WoFS similarly to the expert forecasters, which will be combined into consensus 
forecasts (ConWoFS and ConNoWoFS, respectively). 

These WoF activities are the fifth year the WoF Ensemble has been tested in the SFE to explore 
the potential utility of WoF products for issuing guidance between the watch and warning time scales 
(i.e. 0.5 to 6-h lead times). These activities explore ways of seamlessly merging probabilistic severe 
weather outlooks with probabilistic severe weather warnings as part of NOAA’s Warn-on-Forecast (WoF; 
Stensrud et al. 2009) and Forecasting a Continuum of Environmental Threats (FACETs; Rothfusz et al. 
2018) initiatives. These efforts also support the transition to higher temporal resolution forecasts at the 
SPC. 
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Appendix A: List of scheduled SFE 2021 participants.   
Week 1 Week 2 Week 3 Week 4 Week 5 
3-7 May 10-14 May 17-21 May 24-28 May 1-4 June 

Rick Garuckas (WFO 
MRX) Nick Hampshire (WFO EWX) Anna Lindeman (WFO BOI) 

Heather Kenyon (WFO 
BUF) 

Andrew Zimmerman (WFO 
AKQ) 

John Wetenkamp 
(WFO ARX) 

Francis Kredensor (WFO 
TFX) Kevin Huyck (WFO DLH) 

Emily McGraw (WFO 
CHS) Michael Sporer (WFO RNK) 

Pat Spoden (WFO PAH) Steve Zubrick (WFO LWX) Chad Entremont (WFO JAN) 
Nate McGinnis (WFO 
ILN) Tara Dudzik (WFO IND) 

Kristen Cassady (WFO 
ILN) Matthew Brady (WFO EWX) Jack Settlemaier (NWS SRH) 

Linda Gilbert (WFO 
MQT) Nick Vertz (WFO BYZ) 

Lee Robertson (WFO 
PHI) Keith Sherburn (WFO UNR) Nicholas Fenner (WFO JAN) 

James Wood (WFO 
MKX) Aidan Kuroski (WFO MKX) 

Dirk Peterson (WFO 
OAX) Eswar Iyer (WFO AKQ) 

Jaclyn Anderson (Ritzman) 
(WFO MKX) 

Eric Bunker  
(M-Th; WFO TAE) Keith White (WFO EWX) 

Stephen Harrison 
(WFO SJT) Brian Carcione  (WFO HUN) Lizzie Tirone (ISU) Maria Molina (NCAR) Austin Coleman (TTU) 

Evan Kuchera (USAF) Ed Shimon (WFO ILX) Clark Evans (UWM) 
Lance Bosart (SUNY-
Albany) Chris Melick (USAF) 

Greg Stumpf (NSSL) Bill Gallus (ISU) Dillon Blount (UWM) Steve Weiss (ret. SPC) Craig Schwartz (NCAR) 
Chris Karstens (SPC) Becky A.-Selin (AER) Felicia Guarriello (WPO) Harald Richter (BOM) Mike Coniglio (NSSL) 
Jamie Wolff (DTC) Russ Schumacher (CSU) Casey Davenport (UNCC) Reid Strickler (USAF) Derek Stratman (CIMMS) 
Aaron Hill (CSU) John Peters (Naval P.-Grad) Roger Riggin (UNCC) Gary Lackmann (NCSU) Jidong Gao (NSSL) 

Leigh Orf (Wisc) J. Peters student #1 
Kyle Struckmann (NWS 
NAM) Trevor Campell (NCSU) Lewis Kanofsky (AWC) 

Gabrielle Gantos 
(NCAR) J. Peters student #2 

Nick Goldacker (NCSU; M. 
Parker student) Jacob Radford (NCSU) 

Kai-Chih Tseng 
(GFDL/Princeton) 

Rob Hepper (AWC) Dave Ahijevych (NCAR) Andrew Winters (CU) 
Jeff Beck 
(CIRA/GSL/DTC) Tim Marchok (GFDL) 

Chris Nowotarski 
(TAMU) Ty Higginbotham (AWC) Rebecca Baiman (CU) Nat Johnson (GFDL) Kelly Lombardo (PSU) 
Matt Brown (TAMU) Tomas Pucik (ESSL) Alexandra A.-Frey (UW) Kelton Halbert (Wisc) Geoff Manikin (EMC) 
Brice Coffer (NC State) Francesco Battaglioli (ESSL) Rohan Jain (UW) Jacob Carley (EMC) Matthew Pyle (EMC) 
Chris MacIntosh (EMC) Binbin Zhou (EMC) Charlie Becker (NCAR) Gang Zhao (EMC) Kendall Junker (CAPS/OU) 
Shun Liu (EMC) Shannon Shields (EMC) Logan Dawson (EMC) Ben Blake (EMC) Jana Houser (U. Ohio) 
Xiaoyan Zhang (EMC) Matthew Morris (EMC) Annette Gibbs (EMC) Nigel Roberts (UK Met) Darby Johnson (U. Ohio) 
Nick Silkstone (UK Met) Stephen Gallagher (UK Met) Travis Elless (EMC) Matt Lehnert (UK Met) Curtis Alexander (GSL) 
Aurore Porson (UK 
Met) Adrian Semple (UK Met) Sebastian Cole (UK Met) 

Steve Willington (UK 
Met) Dan Dawson (Purdue) 

David Dowell (GSL) Chris Bulmer (UK Met) Steve Willington (UK Met) Eric James (GSL) Allie Mazurek (CSU) 

Sarah Trojniak (WPC) Aaron Johnson (OU/MAP) Nate Snook (CAPS) John Brown (GSL) 
Ben Henry (Princeton 
undergrad) 

 Jeff Duda (GSL) Xuguang Wang (OU/MAP) Mike Baldwin (Purdue)  
 John Allen (CMU) Terra Ladwig (GSL) Geeta Nain (Purdue)  
  Ed Szoke (GSL)   
  Jordan Dale (WPO)   

 
SFE Facilitators: Adam Clark (NSSL), Israel Jirak (SPC), Dave Imy (retired SPC), Burkely Gallo (CIMMS/SPC), Kenzie Krocak 
(CIMMS/SPC/CRCM), Brett Roberts (CIMMS/SPC/NSSL), Kent Knopfmeier (CIMMS/NSSL), Andy Dean (SPC), Eric Loken 
(CIMMS/NSSL), David Harrison (CIMMS/SPC), David Jahn (CIMMS/SPC), Jacob Vancil (CIMMS/SPC), Jeff Milne 
(CIMMS/SPC), and Nathan Dahl (CIMMS/SPC). 
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Appendix B: Organizational structure of the NOAA/Hazardous Weather Testbed 
 

NOAA’s Hazardous Weather Testbed (HWT) is a facility jointly managed by the National Severe 
Storms Laboratory (NSSL), the Storm Prediction Center (SPC), and the NWS Oklahoma City/Norman 
Weather Forecast Office (OUN) within the National Weather Center building on the University of 
Oklahoma South Research Campus.  The HWT is designed to accelerate the transition of promising new 
meteorological insights and technologies into advances in forecasting and warning for hazardous 
mesoscale weather events throughout the United States.  The HWT facilities are situated between the 
operations rooms of the SPC and OUN.  The proximity to operational facilities, and access to data and 
workstations replicating those used operationally within the SPC, creates a unique environment 
supporting collaboration between researchers and operational forecasters on topics of mutual interest. 

The HWT organizational structure is composed of three overlapping programs (Fig. B1).  The 
Experimental Forecast Program (EFP) is focused on predicting hazardous mesoscale weather events on 
time scales ranging from hours to a week in advance, and on spatial domains ranging from several 
counties to the CONUS. The EFP embodies the collaborative experiments and activities previously 
undertaken by the annual SPC/NSSL Spring Experiments.  For more information see 
http://www.nssl.noaa.gov/projects/hwt/efp/. 

The Experimental Warning Program (EWP) is concerned with detecting and predicting mesoscale 
and smaller weather hazards on time scales of minutes to a few hours, and on spatial domains from 
several counties to fractions of counties.  The EWP embodies the collaborative warning-scale 
experiments and technology activities previously undertaken by the OUN and NSSL.  For more 
information about the EWP see http://www.nssl.noaa.gov/projects/hwt/ewp/.  A key NWS strategic 
goal is to extend warning lead times through the “Warn-on-Forecast” concept (Stensrud et al. 2009), 

Figure B1:  The umbrella of the NOAA Hazardous Weather Testbed (HWT) encompasses two 
program areas:  The Experimental Forecast Program (EFP), the Experimental Warning 
Program (EWP), and the GOES-R Proving Ground (GOES-R). 
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which involves using frequently updated short-range forecasts (≤ 1h lead time) from convection-
resolving ensembles.  This provides a natural overlap between the EFP and EWP activities. 

The GOES-R Proving Ground (established in 2009) exists to provide demonstration of new and 
innovative products as well as the capabilities available on the next generation GOES-16 satellite.  The 
PG interacts closely with both product developers and NWS forecasters. More information about GOES-
R Proving Ground is found at http://cimss.ssec.wisc.edu/goes_r/proving-ground.html. 

Rapid science and technology infusion for the advancement of operational forecasting requires 
direct, focused interactions between research scientists, numerical model developers, information 
technology specialists, and operational forecasters.  The HWT provides a unique setting to facilitate such 
interactions and allows participants to better understand the scientific, technical, and operational 
challenges associated with the prediction and detection of hazardous weather events.  The HWT allows 
participating organizations to: 

 
• Refine and optimize emerging operational forecast and warning tools for rapid integration into 

operations  
• Educate forecasters on the scientifically correct use of newly emerging tools and to familiarize 

them with the latest research related to forecasting and warning operations  
• Educate research scientists on the operational needs and constraints that must be met by any 

new tools (e.g., robustness, timeliness, accuracy, and universality)  
• Motivate other collaborative and individual research projects that are directly relevant to 

forecast and warning improvement 
 

For more information about the HWT, see http://www.nssl.noaa.gov/hwt/.  Detailed historical 
background about the EFP Spring Experiments, including scientific and operational motivation for the 
intensive examination of high resolution NWP model applications for convective weather forecasting, 
and the unique collaborative interactions that occur within the HWT between the research and 
operational communities, are found in Weiss et al. (2010 – see 
http://www.spc.noaa.gov/publications/weiss/hwt-2010.pdf), Clark et al. (2012; 2018; 2020; 2021), and 
Gallo et al. (2017). 
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