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Scenes and participant screenshots from each week of the 2020 NOAA Hazardous Weather Testbed 
Spring Forecasting Experiment 
 
Foreword 

 Because of the COVID-19 pandemic, the 2020 Spring Forecasting Experiment was truly unique, with 
challenges and uncertainties that were daunting and unprecedented.  In terms of planning, the timing of the 
pandemic left very little time to adjust.  As in previous years, by mid- to late-March we were close to finalizing 
SFE plans, but when it became clear that gathering and travel restrictions would preclude an in-person 
experiment, we were forced to regroup and switch gears within about a one-month time frame so that we 
could conduct a virtual experiment.  This change in plans required creativity, innovation, and coordination like 
we had never undertaken before, and allowed us to continue progress in key areas of research geared toward 
accelerating research-to-operations for tools and concepts that improve operational severe weather forecasts 
and further our mission to protect life and property.  Our collaborators and team members sacrificed and went 
well above and beyond what was expected of them to make the virtual experiment a success, all while dealing 
with the personal challenges and struggles associated with the pandemic.  While these were challenging times, 
we recognize that we are fortunate to work in a field in which many of us could work from home.  Thus, we 
also acknowledge the dedication of essential workers, those working on the frontlines to combat COVID-19, 
and those that have suffered personal loss from COVID-19.  Ultimately, we are all proud to be a part of the 
SFE team and we thank NSSL and SPC management for supporting a virtual experiment and all our 
collaborators and participants for making the experiment a success.   
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1. Introduction 
 
 The 2020 Spring Forecasting Experiment (2020 SFE) was conducted from 27 April – 29 May by the 
Experimental Forecast Program (EFP) of the NOAA/Hazardous Weather Testbed (HWT), and was co-led 
by the NWS/Storm Prediction Center (SPC) and OAR/National Severe Storms Laboratory (NSSL).  
Additionally, important contributions of convection-allowing models (CAMs) were made from 
collaborators including the NOAA Global Systems Laboratory (GSL), NOAA Geophysical Fluid Dynamics 
Laboratory (GFDL), United Kingdom Meteorological Office (Met Office), National Center for Atmospheric 
Research (NCAR), and NOAA/NCEP’s Environmental Modeling Center (EMC).  Participants included about 
100 forecasters, researchers, model developers, university faculty, and graduate students from around 
the world (see Table 1 in the Appendix).  Because of the COVID-19 pandemic, restrictions on travel and 
gatherings precluded an in-person experiment in the HWT facility.  However, to maintain momentum in 
key areas of convection-allowing model development, the EFP conducted the 2020 experiment virtually.  
As in previous years, the 2020 SFE aimed to test emerging concepts and technologies designed to improve 
the prediction of hazardous convective weather, consistent with the Forecasting a Continuum of 
Environmental Threats (FACETs; Rothfusz et al. 2018) and Warn-on Forecast (WoF; Stensrud et al. 2009) 
visions: 
 

Operational Product and Service Improvements: 
• Explore the ability to generate higher temporal resolution Day 1 severe weather outlooks than 

those issued operationally by SPC by issuing 1- and 4-h time window outlooks for individual 
severe hazards (tornado, hail, and wind) using a prototype Warn-on-Forecast system (WoFS).   

• Test the utility of WoFS for updating full period hazard forecasts valid 2100-1200 UTC.   
• Explore the ability to provide enhanced information on the conditional intensity of tornado, 

wind, and hail events by delineating areas expected to follow “normal”, “hatched”, or “double-
hatched” intensity distributions.   
 

Applied Science Activities: 
• Compare various CAM ensemble prediction systems to identify strengths and weaknesses of 

different configuration strategies.  Most of these comparisons were conducted within the 
framework of the Community Leveraged Unified Ensemble discussed below.  Additional baseline 
comparisons were made using the High-Resolution Ensemble Forecast System Version 3.0 
(HREFv3), which is scheduled to become operational at the end 2020 or early 2021.   

• Compare and assess different machine-learning approaches for evaluating the likelihood of wind 
damage reports being associated with gusts ≥ 50 knots. 

• Compare and assess two machine-learning techniques for producing probabilistic hazard 
guidance from a deterministic 3-km grid-spacing CAM.   

• Evaluate the utility of various multi-model, single-model, and time-lagged ensemble 
configuration strategies using HREFv3 as a baseline.   

• Using the High-Resolution Rapid Refresh Ensemble (HRRRE), evaluate whether ensemble 
sensitivity-based subset probabilities provide improved guidance relative to probabilities 
produced from all 1800 and 0000 UTC HRRRE members.   

• Compare and assess different verification approaches in CAM ensembles for predicting hail size. 
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• Evaluate configurations of the Stand-Alone-Regional Finite Volume Cubed Sphere Model (FV3-
SAR) with different data assimilation, physics schemes, numbers of vertical levels, and horizontal 
advection settings.   

• Compare and assess two different versions of the 3D real-time mesoscale analysis (3D-RTMA) 
system that use different sources of background error covariances.   

• Focusing on forecast hours 0-12 over regions with sparse radar coverage, evaluate model 
configurations with and without assimilation of total lightning data from the GOES 16 
Geostationary Lightning Mapper (GLM).   

• Evaluate the utility of several methods for producing calibrated hazard guidance from HREFv2.1, 
which was the current operational version of HREF used at SPC during SFE 2020.   

• Compare and assess the skill and utility of the primary deterministic CAMs provided by each SFE 
2020 collaborator.   

• Using deterministic CAMs provided by NCAR, NSSL, and the UK Met Office, examine forecast 
sensitivity to different initial conditions and model cores at convective scales.   

• Evaluate WoFS for applications to short-term severe weather outlook generation, and explore 
the potential value provided by experimental, enhanced resolution (1.5 km grid-spacing) 
deterministic and ensemble WoFS configurations.      

 
A suite of state-of-the-art experimental CAM guidance contributed by our large group of 

collaborators was critical to the 2020 SFE.  For the fifth consecutive year, these contributions were 
formally coordinated into a single ensemble framework called the Community Leveraged Unified 
Ensemble (CLUE; Clark et al. 2018).  The 2020 CLUE was constructed by having all groups coordinate as 
closely as possible on model specifications (e.g., grid-spacing, vertical levels, physics, etc.), domain, and 
post-processing so that the simulations contributed by each group could be used in controlled 
experiments.  This design allowed us to conduct several experiments to aid in identifying optimal 
configuration strategies for CAM-based ensembles.  The 2020 CLUE included 41 members using 3-km grid-
spacing (except for the 2.2 km grid-spacing UK Met Office members) that allowed several unique 
experiments.  The 2020 SFE activities also involved testing the WoFS for the fourth consecutive year.    

This document summarizes the activities, core interests, and preliminary findings of the 2020 SFE.  
More detailed information on the organizational structure and mission of the HWT, model and ensemble 
configurations, and information on various forecast tools and diagnostics can be found in the operations 
plan (Clark et al. 2020; https://hwt.nssl.noaa.gov/sfe/2020/docs/HWT_SFE2020_operations_plan.pdf).  
The remainder of this document is organized as follows: Section 2 provides an overview of the models 
and ensembles examined during the 2020 SFE along with a description of the daily activities, Section 3 
reviews the preliminary findings of the 2020 SFE, and Section 4 contains a summary of these findings and 
some directions for future work. 

 
2.  Description 
 
a) Experimental Models and Ensembles 
 
 A total of 80 unique CAMs were run for the 2020 SFE, of which 41 were a part of the CLUE system.  
Other CAMs outside of the CLUE were contributed by NSSL (WoFS) and EMC (HREFv2.1 and HREFv3).  
Forecasting activities during the 2020 SFE emphasized the use of WoFS in generating experimental 
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probabilistic forecasts of individual severe weather hazards.  Additionally, the 2020 CLUE configuration 
enabled numerous scientific evaluations focusing on model sensitivities and various ensemble 
configuration strategies. 

To put the volume of CAMs run for 2020 SFE into context, Figure 1 shows the number of CAMs 
run for SFEs since 2007.  The noticeable drop in 2020 relative to previous years is because three regular 
SFE collaborators, NCAR, the Center for Analysis and Prediction of Storms (CAPS) at the University of 
Oklahoma, and the Multi-Scale data Assimilation and Predictability Laboratory at the University of 
Oklahoma (OU-MAP), did not contribute ensembles for 2020.  CAPS and OU-MAP are transitioning to new 
NOAA-funded projects that don’t involve HWT experiments until 2021, while NCAR is transitioning to a 
new project focused on machine-learning applications for post-processing CAM output rather than 
optimizing CAM ensemble configurations.  Aside from the abnormally low number of models in 2020, 
Figure 1 shows an increasing trend.  The consolidation of members into the CLUE has made this increase 
more manageable and facilitated more controlled scientific comparisons.   
 

 
 
Figure 1 Number of CAMs run for SFEs since 2007.  The different colored stacked bars indicate the contributing 

agencies. 
 
More information on all of the modeling systems run for the 2020 SFE is given below.   
 
 1) THE COMMUNITY LEVERAGED UNIFIED ENSEMBLE (CLUE) 
 
 The 2020 CLUE is a carefully designed ensemble with subsets of members contributed by NOAA 
groups at NSSL, GFDL, GSL, and EMC, and non-NOAA groups at NCAR and the UK Met Office.  To ensure 
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consistent post-processing, visualization, and verification, CLUE contributors output all model fields to the 
same grid.  Collaborators based in the U.S. used the Unified Post Processor (UPP; available at 
http://www.dtcenter.org/upp/users/downloads/index.php) while the UK Met Office used their own in-
house software for model post-processing.  All groups output a set of storm-based, hourly-maximum 
diagnostics including updraft helicity over various layers, updraft speed, and hail size, as well as standard 
CAM diagnostics like simulated reflectivity and precipitation.  While the UK Met Office output fields were 
somewhat limited, U.S.-based groups generally replicated the 2D fields output by the operational High 
Resolution Rapid Refresh (HRRR) model because of their relevance to a broad range of forecasting needs 
including aviation, severe weather, and precipitation.  The UK Met Office runs covered a 3/4 CONUS 
domain, while all other CLUE members covered the full CONUS.  A full list of members and further details 
on ensemble configurations are provided in the 2020 SFE operations plan.  Table 1 provides a summary 
of each CLUE subset.   
 The design of the 2020 CLUE allowed for several unique experiments that examined issues 
immediately relevant to the design of a NCEP/EMC operational CAM-based ensemble.  The primary groups 
of experiments are listed in Table 2.   
 
Table 1 Summary of 2020 CLUE subsets.   

Clue 
Subset 

# of 
mems 

IC/LBC perts Mixed 
Physics 

Data Assimilation Model 
Core 

Agency Init. Time(s) 
UTC 

HRRRv4 1 none no GSI-EnVar ARW GSL 00-23 

HRRRE 9 EnKF no EnKF ARW GSL 00, 06,  
12, 18 

gsl-fv3sar 4 none yes cold start FV3 GSL 00 

arw-ICs 2 none no cold start ARW NCAR 00 

ukmet 9 MOGREPS-G no cold start UM UK Met  18, 00 

um-ICs 2 none no cold start UM UK Met 00 

nssl-glm 1 none no NSSL-VAR (GLM) ARW NSSL 00 

nssl-noglm 1 none no NSSL-VAR (no 
GLM) 

ARW NSSL 00 

nssl-tl 6 none yes cold start ARW NSSL 02, 03, 05, 
08, 09, 11 

sarfv3-ICs 2 none no cold start FV3 NSSL 00 

emc-fv3sar 3 none no cold start FV3 EMC 00 

gfdl-fv3 1 none no cold start FV3 GFDL 00 
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Table 2 List of CLUE experiments for the 2020 SFE.  The CLUE subsets listed are from Table 1. 

Experiment 
Name 

Description CLUE 
subsets 

Model ICs vs. 
core 
sensitivity 

NCAR, NSSL, and the UK Met office each ran two configurations of the 
Advanced Research Weather Research and Forecasting model (WRF), FV3-
SAR, and Unified Model (UM), respectively, initialized from the Global 
Forecast System (GFS) and UM global models. Goal: Examine forecast 
sensitivity to different initial conditions and model cores at convective 
scales.   

arw-ICs, 
um-ICs, & 
sarfv3-ICs 

FV3-SAR 
Configurations 

GSL, NSSL, and EMC ran various configurations of the FV3-SAR with 
different data assimilation, physics schemes, numbers of vertical levels, and 
horizontal advection settings.  Goal: Evaluate FV3-SAR sensitivities and find 
the optimal FV3-SAR configuration for convective weather forecasting. 

gsl-fv3sar, 
emc-
fv3sar, & 
sarfv3-ICs 

Single-model 
time-lagging 

Single-model CAM ensemble configurations with and without time-lagging 
were compared. Goal: Assess whether time-lagging results in improved 
probabilistic forecasts from single model ensembles. 

HRRRv4, 
HRRRE, 
ukmet, & 
nssl-tl 

Model-model 
vs. time-
lagging:  

Three comparisons were conducted: (1) single-model ensembles initialized 
from one time, (2) single-model ensembles that are time-lagged, and (3) 
multi-model ensemble that are time-lagged.  Goal: Evaluate the relative 
impact of time-lagging and multi-model approaches in CAM ensembles for 
next-day severe weather forecasting.   

HRRRE & 
ukmet 

Total 
Lightning Data 
Assimilation 

WRF model configurations with and without assimilation of total lightning 
data from the GOES 16 GLM were examined.  Goal: Assess whether 
assimilation of the GLM data improves short-term forecasts (0-12 h) of 
thunderstorms in radar-sparse regions.   

nssl-glm & 
nssl-noglm 

 
 
2) HIGH RESOLUTION ENSEMBLE FORECAST SYSTEM VERSIONS 2.1 & 3 (HREFv2.1 & HREFv3)  
 
The HREFv2.1 is a 10-member CAM ensemble currently running at EMC with forecasts that can be 

viewed at: http://www.spc.noaa.gov/exper/href/.  HREFv2.1 members use different physics, model cores 
[ARW and Nonhydrostatic Multiscale Model on the B-grid (NMMB)], initial and lateral boundary 
conditions [North American Mesoscale (NAM) and Rapid Refresh (RAP) models], and half of the members 
are 12-h time lagged.  The design of HREFv2.1 originated from the Storm Scale Ensemble of Opportunity 
(SSEO), which demonstrated skill during the previous six years in the HWT and SPC prior to HREFv2.1 
operational implementation.  All members, except for the NAM CONUS Nest and HRRR, are initialized with 
a “cold-start”.  Forecasts to 36 h are produced at 0000 and 1200 UTC.  The diversity in HREFv2.1 has proven 
to be a very effective configuration strategy, and it has consistently outperformed all other CAM 
ensembles examined in the HWT during the last few years.   

HREFv3 replaced the High-Resolution Window (HRW) NMMB simulations with emc-fv3sar and 
HRRRv3 with HRRRv4; results from SFE 2019 found that this change did not have a large impact on the 
subjectively assessed performance for severe weather forecasting.  Thus, EMC will move forward with 
implementing HREFv3 operationally late in 2020 or early in 2021.   
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 3) NSSL EXPERIMENTAL WARN-ON-FORECAST SYSTEM 
 
 The full 36-member, 3-km grid-spacing, real-time WoFS ensemble, run from 1500 UTC Day 1 to 
0300 UTC Day 2, is updated every 15 minutes by Gridpoint Statistical Interpolation Ensemble Kalman Filter 
(GSI-EnKF) data assimilation.  Observations that are assimilated include multi-radar, multi-sensor (MRMS) 
reflectivity and radial velocity data, cloud water path retrievals, clear-sky radiances from the GOES-16 
imager, Oklahoma Mesonet observations (when available), and conventional (i.e. prepbufr) observations. 
All real-time WoFS ensemble members utilize the NSSL 2-moment microphysics parameterization and the 
RUC land-surface model; however, the planetary boundary layer (PBL) and radiation physics options are 
varied amongst the ensemble members to increase ensemble spread, given the fact that the EnKF may 
underrepresent model physics errors. Six-hour (three-hour) 18-member ensemble forecasts are initialized 
from the real-time WoFS analyses hourly (half-hourly) from 1700 UTC Day 1 through 0300 UTC Day 2.  
 In addition to the real-time WoFS, enhanced horizontal-resolution WoFS ensemble simulations 
were produced for next day evaluation that had 1.5-km grid-spacing with 9 members downscaled from 
the 3-km real-time system and initialized hourly from 1800 to 0300 UTC.  Two deterministic enhanced 
resolution WoFS runs were also produced with one simulation using 3-dimensional variational data 
assimilation and the other using dual-resolution hybrid data assimilation.  All the WoFS forecast are 
viewable using the newly redesigned web-based WoFS Forecast Viewer 
(https://wof.nssl.noaa.gov/realtime). The daily WoFS domains targeted the primary region where severe 
weather was anticipated and covered a 900-km square region. 
 
b) Daily Activities  
 
 SFE 2020 daily activities were centered around model evaluations, as well as limited-scope 
forecasting activities.  A summary of evaluation activities and forecast products can be found below while 
a detailed schedule of daily activities is contained in the appendix (Table A2).  Note, when referencing 
the times in this document at which experiment activities occurred, we use Central Daylight Time (CDT), 
which is the time zone in which the HWT facility and SFE organizers are based.  However, it is worth noting 
that many of our virtual participants were located in different time zones as far away as the United 
Kingdom and Australia, so their local time was quite different.    
 

1) FORECAST AND MODEL EVALUATIONS 
 

Compared to previous SFEs, the model evaluation activities of the 2020 SFE consumed a much 
larger proportion of experiment activities, with all participants engaged in these activities for much of 
the morning.  From 10-11am CDT, evaluations were conducted that involved comparisons of different 
ensemble diagnostics, CLUE ensemble subsets, HREF, and the WoFS Ensembles.  Participants were split 
into Groups A & B, and each conducted a separate set of evaluations.  Participants worked on these 
surveys individually, but typically stayed in the virtual meeting where SFE facilitators were available to 
answer any questions or troubleshoot the model evaluation webpage.  Then, from 11am to noon CDT, 
there was a discussion period when participants could talk about interesting aspects of the model 
evaluations such as forecasts that performed particularly well, model behavior that seemed odd, and/or 
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especially large differences between different experiments, etc.    Another evaluation period was focused 
on the previous day’s experimental forecast products and occurred from 1:40 to 2pm CDT.  In these 
evaluations, experimental forecasts were compared to observed radar reflectivity, local storm reports 
(LSRs), NWS warnings, and MRMS radar estimated hail sizes.   
  
 2) EXPERIMENTAL FORECAST PRODUCTS 
 
 Because of the COVID-19 pandemic, forecasting activities were limited in scope and occurred 
virtually from 1:30-4pm daily with a focus on adding temporal specificity to convective outlooks within 
the Day 1 time period using WoFS Ensemble datasets.  Participation was limited to a small internal group, 
as well as weekly groups of NWS forecasters.  The experimental forecasts covered a limited area domain 
typically encompassing the primary severe threat area with a domain based on existing SPC outlooks 
and/or where interesting convective forecast challenges were expected.  As in previous years, two sets 
of unique outlooks were generated by the R2O and Innovation groups.  Both groups issued outlooks for 
the probability of individual hazards (tornado, wind gusts  50 knots, hail  1.0 in.) within 25 miles (40 km) 
of a point.   

For the R2O group, participants updated the operational SPC 1630 UTC Day 1 Outlook hazard 
probabilities for the period 2100 – 1200 UTC.  Additionally, conditional intensity forecasts were generated, 
for which SPC’s operational probabilities of significant severe hazards (EF-2 or greater tornadoes, winds  
65 kts, or hail  2 in.) could be used as a starting point.  This was the second year that the R2O group has 
issued conditional intensity forecasts.  These forecasts delineate areas that are expected to follow a 
“normal”, “hatched”, or “double-hatched” intensity distribution.  In plain language, “normal” refers to a 
typical severe weather day, where significant severe weather is unlikely, “hatched” areas indicate where 
significant severe weather is possible, and “double-hatched” areas indicate where high-impact significant 
severe weather is expected.  These forecasts could also be thought of as indicating the proportion of 
observed reports that are expected to be severe, where going from “normal”, to “hatched”, to “double-
hatched” would indicate an increasing proportion of significant-severe reports (see Fig. A4 of Appendix 
for more detailed information on each hazard).  One set of forecasts was generated 2-3pm for which WoFS 
data was not used, and a final set of forecasts was generated 3-4pm with available WoFS datasets.   
 For the Innovation group, participants generated severe hazard probabilities valid over a short 
time window, 4-5pm (2100-2200 UTC), and a long time window, 4-8pm (2100-0100 UTC).  An initial 
forecast was generated during the 2-3pm period and an updated final forecast during the 3-4pm period.  
For both sets of initial and final forecasts, one group of forecasters used all available datasets except for 
WoFS, while another used all available datasets including WoFS.  For the Innovation group, forecasting 
individual hazards was a shift from previous years when all the outlooks were focused on total severe 
(i.e., all hazards combined).   
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3.  Preliminary Findings and Results 
 
a) Model Evaluations – Group A  
 
 A1) ISU ML SEVERE WIND PROBABILITIES 
 
 Daily evaluations were performed for four machine-learning (ML) algorithms designed to 
diagnose the likelihood that storm reports for thunderstorm winds were due to winds  50 knots.  The 
algorithms were created based on the perception that many wind values assigned to thunderstorm wind 
damage reports lacking a measurement in the Local Storm Reports (LSRs) database are overestimated.  
Our analysis of all ~180,000 thunderstorm wind reports during 2007-2018 found that 89% were estimates, 
and 40% of these were assigned a value of exactly 50 knots.  Only 13% of measured reports had a value 
of 50 knots.  The algorithms were trained using the ~18,000 thunderstorm wind damage reports that had 
a measured wind value during 2007-2017.  From the LSRs dataset, date, time, location and episode and 
event narrative data were used for training along with a spatial-temporal scaled distance to the nearest 
measured report value.  Also, 31 parameters from SPC Mesoanalyses were used as input for training over 
a 200 x 200 km box centered on each storm report.  Based on testing on the 2018 measured thunderstorm 
wind reports (for which ground truth exists), three algorithms (gradient boosted model – GBM, support 
vector machine – SVM, and an average ensemble method) that scored best with area under the ROC curve 
and Brier Score were chosen, along with the well-known neural network technique, for evaluation. 
 Python-generated maps of the previous day’s wind reports with the probability diagnosed by each 
of 4 algorithms shown using different levels of blue color and differentiated between estimated reports 
(squares) and measured ones (triangles) were shown to participants (Fig. 2) via a web site 
(https://sites.google.com/iastate.edu/storm-report-anonymous/yesterdays-storm-reports).  Algorithm 
names were hidden to prevent bias.  A table with details of each report and the specific probabilities for 
each of the four algorithms was also available on the website. The 1630 UTC outlook from SPC for 
probability of severe thunderstorm wind occurrence could be toggled on or off. 
 

 

Figure 2 Storm reports color-coded for probability value (scale on right) diagnosed by ML algorithm with 1630Z SPC 
probabilistic damaging wind graphic overlaid for a case in late April during the 2020 SFE. 
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The participants were asked to evaluate the ease of use of the website, and then to subjectively 
assign a rating for the perceived value they felt existed in the output from each of the 4 algorithms on 
each day. Since there is no ground truth for any of the estimated reports (which make up the majority of 
all storm reports), subjective evaluations were challenging.  It was felt that the best way to evaluate the 
algorithms would be to use two pieces of information.  First, assuming SPC forecasters have some skill in 
their forecasts of severe wind likelihood, it would make sense that higher probabilities should be assigned 
by the algorithms to reports that occurred within regions where SPC forecasters had placed higher 
probabilities.  Secondly, since the measured reports (triangles in the plots) were known to have winds 
above the severe threshold, the algorithms should diagnose high probabilities at those points. 
 Average subjective scores for the four algorithms were relatively similar (Fig. 3), near 6 on a 10-
point scale, implying participants felt the techniques had value.  The average ensemble scored highest, 
matching what objective measures showed applied to the 2018 test set (not shown).  Analysis of daily 
results shows that the average scores of participants tended to correlate with the probabilities assigned 
by the algorithms (Fig. 4). Although this makes sense for measured reports where probabilities should be 
high, the fact it was true also for estimates (not shown) may reflect a bias in the community that any storm 
report should be believed.  Participants generally liked the website with an average score of 6.17.  Specific 
comments emphasized the need for (1) zooming features since it was at times difficult to read the 
assigned probability values when reports overlapped, (2) perhaps a different color scale using multiple 
colors to make it easier to know the exact probabilities, and (3) the ability to scroll over a report and see 
the exact value of probability assigned by each algorithm.  Many users commented that they could see 
the value in this approach, and that the results made sense, as numerous severe weather events led to 
many reports involving tree damage (without any measured reports) in the eastern part of the country 
which were assigned low probabilities that winds were 50 knots or more, while measured reports, often 
in the central U.S., had much higher probabilities.  Also, there was good correspondence of lower 
probabilities being assigned to reports that happened outside the SPC 5% risk, or within the lowest SPC 
probability category (5-15%), and higher probabilities where SPC had forecast a greater chance of severe 
winds (Fig. 5).  This agreement likely is because our algorithms use environmental data in a similar way to 
the human forecasters at SPC. 
 

 

Figure 3 Average of all evaluations from 86 participants during the 2020 SFE for the four ML algorithms. 



 13 

 

Figure 4 Comparison between the average daily evaluation score and the average daily storm report probability for 
each algorithm (different colors). Each point represents a different day. 

 

 

Figure 5 Comparison between the 1630 UTC SPC forecast probability of severe wind occurrence and the average 
storm report probability (from 4 algorithms) for all cases during the 2020 HWT SFE. 
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Brier scores were also computed for the 2020 SFE cases (Table 3) to determine if subjective ratings 
matched an objective measure.  Unfortunately, there were not enough events to compute Areas Under 
the ROC Curve, which had been done for the 2018 test set of data. Unlike with the archived Storm Reports 
dataset where episode narrative or event narrative text (or both) exists for all reports, for the real time 
reports available during SFE, some measured values lack any text information.  Therefore, a separate 
version of the algorithms had to be trained to be applied to reports lacking text information.  The Brier 
Scores in Table 3 are an average of the output that used the original algorithms and that which had to use 
versions for which no text data were used in training.  These values are not as skillful as those obtained 
using the 2018 test set, where Brier Scores were as low as 0.145.  Of note, when only the algorithms not 
using text data were used for the 2020 SFE cases, BSs improved and were as low as 0.167 for GBM and 
0.17 for Ave Ens.  Unlike in 2018, where the use of text data improved skill for some algorithms, during 
2020 it diminished the skill for all algorithms.  This result implies a challenge for the development efforts, 
as real time storm reports end up with a different distribution of text than the archived reports which 
must be used for training.  It is possible the lower BSs during the 2020 SFE were also due to an unusual 
severe weather season, with an almost complete absence of storm reports in the north-central US (which 
would typically be relatively active in May) and a relative abundance of reports in the Northwest and the 
East.  Over the long period used for training, a substantial majority of measured reports occurred in the 
central US with far fewer in the western and eastern parts of the country.  The BSs in Table 3 agree with 
the subjective scores in showing the Average Ensemble to be best, and for the Neural Network to perform 
worse.  However, the objective and subjective scores differ greatly for GBM, which has the second-best 
average BS, but the lowest subjective score. 
 
Table 3 Brier Scores averaged over all 2020 SFE cases for the four algorithms tested. 

algorithm GBM Neural Network Stack RF Ave Ens 
BS 0.203 0.243 0.236 0.190 

 
Future work will include adding composite radar reflectivity and azimuthal shear data to the 

training, along with population density, land use, and elevation information.  In addition, although to some 
participants it seemed reasonable that the algorithms assigned low probabilities to the majority of 
estimated storm reports that involved tree damage in the eastern United States, further investigation 
should be performed to be sure the lower probabilities are not an artifact of less measured reports 
typically occurring in this part of the country, which might influence the training process to not recognize 
environments that are relatively humid and that lead to wet microbursts with truly severe winds.  
Although it is possible the new data sources will reduce any problems that might be present, further study 
will include the development of algorithms specific to three regions of the country – the East, Central, and 
West, to see how sensitive the assigned probabilities are to the distribution of the training data.  In 
addition, further study will be performed for textual analysis techniques, as it would seem the textual 
information should improve objective skill scores and not harm them. 
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 A2) NCAR ML HAZARD GUIDANCE  
 
 For the 2020 virtual HWT SFE, NCAR tested a ML-based system to produce convective hazard 
guidance using output from a deterministic CAM forecast. The goals for the HWT were to assess the added 
value of the ML hazard guidance compared to contemporary UH-based hazard guidance derived from 
CAMs, as well as optimize the presentation of the forecast guidance. 
 Hazard guidance was generated from a neural network (NN) and random forest (RF) that were 
trained with an upscaled (80-km grid) set of diagnostics from ~400 deterministic 3-km WRF forecasts from 
events in 2010-2015 and corresponding storm reports. Output from a real-time deterministic 3-km WRF 
forecast configured identically to the model used for training was input into the trained ML models to 
make the predictions. The ML models were configured to produce guidance for wind, hail, tornado, 
significant wind, significant hail, and any severe report at 80-km grid point locations within the contiguous 
United States. The models were trained to predict reports within 2-hr, and 40 km and 120 km of each 
forecast hour and grid point for each of the six hazard types. The ML any-hazard predictions were 
compared to a smoothed UH forecast produced by thresholding the UH field. The UH threshold varied 
with latitude, longitude, day of the year, and time of day. The NN, RF, and UH output for each forecast 
hour were visualized and compared in a web-based tool (Fig. 6). The visualization interface and archive of 
all forecasts from Spring 2020 is available at: 
https://www2.mmm.ucar.edu/projects/ncar_ensemble/camviewer/. 
 

 

Figure 6 Screenshot of visualization interface displaying 40-km any-hazard NN forecasts for 14 May 2020. Grid 
boxes with at least one storm report are highlighted in gray circles.  
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Participants were asked to provide subjective feedback on various aspects of the ML forecasts, 
including rating the NN, RF, and UH any-hazard forecasts at both the 40-km and 120-km length-scales, 
and rating the individual hazard forecasts at the 40-km length scale. Subjective skill was evaluated by 
comparing forecast guidance with the locations of storm reports. Open-ended questions were provided 
for general feedback on the utility of the ML guidance and the web-based visualization interface. The 
survey was administered using Google Forms. There were 242 unique responses during the HWT period. 
A summary of the responses related to the four main evaluations are provided below. 
 
 i) Evaluation of any-hazard NN, RF, and UH forecasts at 40-km spatial scale 
 

Participants were asked to “rate the 12Z-12Z Maximum 4-hr, 40-km any-hazard probabilistic 
forecasts on a scale of 1-5.” for the NN, RF, and UH 40-km forecasts. Additionally, they were asked to rate 
the 120-km NN any-hazard forecasts. The average ratings and most commonly assigned rating (i.e., mode; 
in parentheses) for the 40-km NN, RF, and UH forecasts were 3.53 (4) , 3.30 (3), and 2.69 (3), respectively 
(Fig. 7). While the most commonly assigned rating for the 40-km RF and UH forecasts was the same (3), 
the number of ratings of 1 or 2 was twice as large for the UH forecasts, indicating many more poor 
forecasts relative to both the RF and NN forecasts. Conclusion: while the NN any-hazard guidance was 
subjectively more skillful than the RF, the differences were modest. More importantly, the NN and RF 
were deemed superior to the UH guidance at the 40-km spatial scale. 

 

 
Figure 7 Histogram of ratings for 40-km any-hazard NN, RF, and UH forecasts, and the 120-km any-hazard NN 

forecasts.  
 
 ii) Evaluation of hail, wind, and tornado 40-km NN and RF forecasts 
 
 Participants were asked to “rate the individual hazard probabilities for hail  1", wind   50kts, and 
tornado.” for the 40-km NN and RF forecasts. The average ratings for the 40-km NN wind (3.21) and hail 
(3.35) probabilities were higher for the NN compared to the RF (3.12 and 3.05, respectively), consistent 
with the results of the any-hazard evaluation (Fig. 8). The opposite was true for the tornado probabilities, 
as the average rating was higher for the RF (3.41) compared to the NN (3.24), although the distribution of 
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scores for the tornado ratings was larger, with more 1 point and 5 point ratings compared to the hail or 
wind forecasts (Fig. 8). Given the tendency for the NN probabilities to be higher than the RF (see objective 
verification below) and the relative rarity of tornadoes during the 2020 HWT, the NN probabilities were 
likely too aggressive, although participants noted both the NN and RF tornado probability magnitudes 
were in line with typical SPC outlook probabilities. Given the lack of tornado events during 2020, the NN 
and RF tornado forecast ratings were likely heavily weighted by non-events (e.g., high subjective ratings 
for having near zero probabilities when tornadoes did not occur), boosting the mean rating. The wind 
probabilities were rated the lowest for both the NN and RF, suggesting the ML algorithms have slightly 
more difficulty anticipating the locations of convectively generated wind reports relative to hail. 
 Open-ended feedback was also solicited related to the ability of the guidance to distinguish 
between hazards on a given day. The majority of respondents noted that the guidance did an excellent 
job of distinguishing between days and regions where wind or hail was the primary observed hazard, and 
often kept tornado probabilities near-zero when tornadoes did not occur. Additionally, it was noted during 
many forecasts that the ML guidance often correctly captured the transition from a hail threat with initial 
convection, to a severe wind threat as convection became more linear and grew upscale.  Conclusion: 
Similar to the any-hazard predictions, the NN individual hazard forecasts for hail and wind were superior 
to the RF forecasts, although the differences were modest. The RF and NN tornado predictions appear 
credible, although the lack of events in 2020 biases their ratings toward non-events. Both the NN and 
RF were able to distinguish between likely hazard types on a given day, especially between hail and 
wind and the transition between those two hazards. 
 

 

Figure 8 Histogram of ratings for the 40-km NN and RT forecasts for (left) hail  1.0-in, (center) wind  50 knots, and (c) 
tornadoes. 

 
 iii) Evaluation of 40-km vs. 120-km ML guidance 
 

Participants rated the 120-km NN guidance (for comparison to the 40-km NN guidance) and were 
also asked “did you prefer either the 40-km or 120-km forecast guidance for this forecast? If so, why?” The 
average rating for the 120-km NN forecasts was 3.51, almost identical to the mean forecast rating for the 
40-km NN forecast of 3.53 (Fig. 7). Even though the subjective ratings were the same when evaluated with 
storm reports, most participants preferred the 40-km guidance. Of the 230 responses to the open-ended 
feedback question, 131 (57%) indicated a preference exclusively for the 40-km guidance and 60 (26%) 
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indicated a preference exclusively for the 120-km guidance. 30 responses (13%) indicated that both the 
40-km and 120-km guidance were both useful, with several participants noting that interrogating both 
spatial scales was beneficial. 9 responses (3%) indicated no preference. 

Participants that preferred the 40-km guidance often disliked the large areas of false alarm that 
occurred within the 120-km guidance, and preferred the spatial detail and granularity present when using 
the 40-km spatial scale. Those that preferred the 120-km guidance often mentioned the enhanced 
probability of detection and that the 120-km spatial scale was useful to define the overall threat area on 
a given day, acknowledging that the spatial details in the 40-km forecasts were more often inaccurate 
than the smoother 120-km probabilities. Additionally, many participants noted that the 40-km 
probabilities were aligned better with SPC probabilistic products, and that the 120-km probabilities were 
too large.  Conclusion: the subjective feedback and ratings support the presentation of the ML guidance 
products on both spatial scales, with a preference for the 40-km probabilities due to their detail and 
equivalence to SPC outlook probabilities. 

 
 iv) Feedback on visualization system and products 
 

The feedback was overwhelmingly positive regarding the visualization interface. Feedback 
generally focused on the intuitive design of the interface, although many suggested the inclusion of 
additional products and features (e.g., overlay of NWS warnings, ability to zoom in to regions, and 
providing the option to overlay probability contours instead of numeric probabilities). Several participants 
noted that the color choices for the probabilities should be clarified (some participants wondered if the 
shading was meant to convey some property of the forecast) and that a better description of some of the 
products should be added to the site.  Conclusion: the web interface was a useful tool for visualizing the 
ML and UH hazard probabilities. Additional features should be added in the future to enhance the 
interface, with clarification of existing products and color choices. 
 

In addition to information compiled from the HWT surveys, objective verification was also 
performed.  The 40-km and 120-km NN, RF, and UH any-hazard forecasts produced between 1 March 
2020 through 30 June 2020 (122 events) were verified with SPC preliminary storm reports for all CONUS 
80-km grid points. Verification statistics were computed with all 4-hr forecasts valid between 12Z - 12Z. 
While the verification includes a larger subset of cases than those subjectively evaluated during the HWT, 
inclusion of several months of forecasts allows for a more robust objective evaluation of forecast system 
performance. Verification metrics included the Brier skill score (BSS), area under the relative operating 
characteristic curve (AUC), and attributes diagrams. The BSS was computed with a 30-year severe weather 
climatology that varies based on day of year, time of day, and grid box. 

Both the NN and RF 4-h any-hazard forecasts possessed excellent forecast resolution at both the 
40-km and 120-km spatial scales, with AUCs of ~0.96, while the UH forecasts had smaller AUCs of ~0.85 
(the AUCs were similar for both the 40-km and 120-km length scales; Fig. 9). The AUC differences reflect 
the ability of the ML forecasts to provide non-zero probabilities for a much larger fraction of events, in 
cases where the UH forecasts were zero (e.g., in situations where the UH threshold was not met). The 
AUC values and AUC differences between the ML and UH forecasts for the 2020 forecasts are very similar 
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to the AUC computed using previous seasons during initial testing (e.g., 2016). The differences in AUC 
between the two ML techniques were much smaller, e.g., ~0.02 at both length-scales. 
 While the ML forecasts possessed large AUCs, the reliability characteristics varied between the 
NN, RF, and UH forecasts (Fig. 9). At the 40-km length-scale, the NN forecasts had a pronounced 
overforecasting bias, while the RF forecasts were better calibrated. UH forecast reliability tended to be 
between the RF and NN forecast reliability curves. All forecasts were better calibrated at the 120-km 
spatial scale, but still tended to overforecast, with the overforecasting issue largest for the NN compared 
to the RF. Finally, the ML forecasts produced larger BSSs than the UH forecasts at both 40-km and 120-
km, with the BSS differences being largest at 120-km (Fig. 9). For example, the BSS gained by using the RF 
over the UH forecasts was ~0.04 at 40-km and ~0.09 at 120-km. The addition of non-zero probabilities by 
the ML techniques in areas where the UH forecasts were zero likely led to these differences, although 
differences in reliability may have played a role as well. 
 These results confirm subjective impressions of the guidance received in the surveys and through 
informal discussions during the HWT period. After the conclusion of the experiment, the PIs were able to 
reduce the NN overforecasting bias by modifying the training parameters of the NNs, as well as adding 
more training data. Future versions of the ML algorithms will incorporate this large training dataset and 
modified training parameters.  Conclusion: the 4-h ML forecasts better discriminated between severe 
and non-severe storms than the 4-h UH forecasts during Spring 2020 (i.e., had larger AUCs and BSSs) at 
both the 40-km and 120-km length scales. The 4-h NN forecasts tended to be poorly calibrated more so 
than the RF and UH 4-h forecasts, especially at 40-km. Overforecasting was mitigated in the 2020 
forecasts in post-HWT experiments by using a larger training dataset and modified training 
hyperparameters. 
 

 

Figure 9 Reliability diagrams for (left) 40-km and (right) 120-km, 4-h, NN, RF, and UH any-hazard forecasts issued 
between March 2020 and 30 June 2020. AUC and BSS are provided in parentheses.   
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 A3) CLUE 0000 UTC CAM TL-Ensemble 
 
 Three separate experiments were conducted during the 2020 SFE to evaluate time-lagging as a 
formal strategy for CAM ensemble design.  These evaluations were focused over a mesoscale area of 
interest with the greatest potential for severe weather over the CONUS during the convective day (i.e., 
1200-1200 UTC). The forecast field most commonly examined during this severe weather evaluation was 
the 24-h summary of 2-5 km AGL hourly maximum UH. The ensemble maximum UH and neighborhood 
UH probabilities (>99.85th percentile) were displayed along with preliminary local storm reports (e.g., Fig. 
10), and participants rated the forecasts (on a scale of 1-10) based on the quality of guidance provided to 
a severe weather forecaster.  One of the CAM ensemble evaluations (i.e., A3: CLUE 00Z CAM TL-Ensemble) 
compared two single-model ensembles (HRRRE and UM) initialized at 0000 UTC to their respective time-
lagged ensembles (i.e., half of the members each from 0000 UTC and 1800 UTC). These single-model 
ensembles were compared to the HREFv2.1 and HREFv3 (Fig. 10), which serve as the operational baseline 
for CAM ensemble performance.  
 

 

Figure 10 Example of multi-panel comparison webpage for the 0000 UTC CAM ensemble A3 evaluation during the 
2020 SFE. The 24-h ensemble maximum UH (shaded) and neighborhood probability of UH>99.85th 
percentile (contoured) is displayed for HREFv2.1 (upper left), HRRRE (upper middle), UM (upper right), 
HREFv3 (lower left), HRRRE TL-10 (lower middle), and UM TL-10 (lower right) for 22 May 2020. Preliminary 
severe storm reports are also overlaid (wind - blue squares, hail - green circles, and tornado - red upside-
down triangles). 
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The distribution of subjective ratings by participants during the five-week SFE for the time-lagged 
ensembles in the A3 evaluation were similar to their respective 0000 UTC ensembles (i.e., HRRRE TL-10 
vs. HRRRE and UM TL-10 vs. UM; Fig. 11).  The SFE participants commonly noted that daily forecasts from 
the time-lagged ensembles looked very similar to the corresponding non-time-lagged forecasts.   While 
the time-lagged ensembles did not often improve probabilistic forecasts of severe weather, they also did 
not notably degrade the forecasts.  Thus, more rigorous and quantitative investigation should be 
conducted to determine the optimal number of ensemble members to run at a single time for CAM 
ensemble applications, given the expense to run additional forecast members. As has been demonstrated 
in previous SFEs, the HREF continues to stand as a formidable baseline for experimental CAM ensembles, 
with the HREFv3 receiving the highest ratings overall of the CAM ensembles (Fig. 11). 

 

 

Figure 11 Distributions of subjective ratings (1-10) by SFE participants of hourly maximum fields for severe weather 
forecasting over a mesoscale area of interest for the forecast hours 13-36 for the A3: CLUE 00Z CAM TL-
Ensemble evaluation (HRRRE - orange; HRRRE TL-10 - light orange; UM - green; UM TL-10 - light green) 
compared to the HREFv2.1 (blue) and HREFv3 (light blue). 
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 A4) CLUE TTU ENSEMBLE SUBSETTING 
 

A daily evaluation of probabilities from a time-lagged 18-member HRRRE ensemble and those 
based on 6-member ensemble subsets chosen objectively through the sensitivity-based subsetting 
technique (Ancell 2016) was performed at the 2020 SFE. Ensemble sensitivity was calculated within the 
real-time Texas Tech University (TTU) 42-member DART/WRF ensemble assimilation and forecasting 
system, and HRRRE member subsets were chosen based on the smallest errors in sensitive regions 
measured against TTU EnKF analyses. The main goal of this evaluation was to assess the generality of the 
subsetting technique, and whether it can be used across ensemble systems as a viable operational tool. 

Each day, a response function location was chosen based on input from SFE participants through 
a web-based graphical user interface (GUI). The GUI was used to identify locations in which uncertain 
probability signals (typically 30-70% probability hourly maximum 2-5km UH exceeded 25 m2/s2 within 20 
miles of a point) existed in both the TTU and HRRRE ensemble forecasts. The Day 1 response function area 
was selected at a forecast hour between 1800 UTC (the 18hr forecast) and 1200 UTC (the 36hr forecast) 
in areas that exhibited high uncertainty over the prior 6hr period. This response selection process was 
performed by viewing the full TTU 42-member probabilities of exceeding 25 and 100 m2/s2 2-5km UH valid 
over the 18-36hr forecast period, as well as the HRRRE 9-member probabilities of exceeding 75 m2/s2 2-
5km UH over the 24-42hr and 18-36hr periods for the 1800 UTC and 0000 UTC initializations, respectively.  

Once the response function time and location were chosen, the sensitivity for a preset response 
function (the number of grid points exceeding 50 m2/s2 2-5km UH) was calculated. These sensitivities were 
calculated with respect to 250-, 500-, 700-, 850-hPa temperature, winds, and geopotential heights, 2-
meter dewpoint and temperature, 10-meter U- and V-wind components, and SLP on the 12-km TTU 
CONUS domain from the 7-hr forecast state (valid 0700 UTC). The 6 ensemble members that possessed 
the smallest sensitivity-weighted errors (chosen using the sum resulting from the projection of the 
ensemble differences with the analysis onto the ensemble sensitivity field over the greatest 50% of 
sensitivity magnitudes) were chosen. The analysis used to determine the errors was the 1hr forecast 
ensemble mean (valid at 0700 UTC) from the 0600 UTC Texas Tech ensemble initial conditions determined 
through the DART EAKF data assimilation procedure. The 1hr forecast at 0700 UTC was used in lieu of the 
analysis valid at 0600 UTC due to significant imbalance present after the assimilation procedure. 
Probability fields of 75 m2/s2 2-5km UH and 40 dBZ simulated near-surface reflectivity of Day 1 convection 
were generated for the 6-member ensemble subset and the best member of the subset, which were 
subsequently compared against probabilities from the full ensemble the following day after the severe 
event occurred. 

Differences between the full ensemble and subset probabilities as well as the best member 
forecasts were subjectively evaluated by participants, relative to SPC storm reports, NWS warnings, and 
practically-perfect probability fields. Figures 12 and 13 show two examples of the subsetting product 
during the 5-week experiment that participants evaluated. Figure 12 depicts a successful case for 
convection in southern Texas valid between 2000 and 0000 UTC (forecast hours 20-24) on May 27. 
Probabilities of UH exceeding 75 m2/s2 are shown from the full ensemble (left), the 6-member subset 
(middle), and the best member (right), with storm reports and NWS warnings overlaid. The subset 
increased probabilities near the epicenter of the most active weather and the best member better 
highlighted the axis of the severe activity. This case is particularly interesting given that the subset 
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improves the forecast even though a wide-range of different hazards are produced within a relatively 
small spatiotemporal window; the primary threat in the western half of the probability signal appears to 
be hail, while wind and possible embedded tornadoes dominate in the eastern half of the signal. In 
contrast, Figure 13 shows a failure case for convection in southwest Kansas on 21 May 2020. In this case 
the UH coverage subset produced reduced probabilities near the area of most active severe weather and 
increased probabilities to the south, where far fewer severe reports occurred. The best member 
performed even more poorly, with the highest probabilities (smoothed from a single deterministic 
solution) between two clusters of active weather, and zero probabilities in the area with the most reports. 

 

 

Figure 12 Smoothed 40-km neighborhood probabilities of UH > 75 m2/s2 from full time-lagged 18-member HRRRE 
(left), 6-member HRRRE subset (middle), and best deterministic subset member (right) valid from 2000 UTC 
to 0000 UTC (forecast hours 20-24) on May 27-28. LSRs and NWS warning polygons are overlaid for 
subjective evaluation. 

 

 

Figure 13 As in Figure 12, except valid from 1200 to 0300 UTC (forecast hours 23-27) on 21-22 May.   
 
 In general, failure cases outnumbered success cases. This result was apparent through participant 
feedback (Figures 14 and 15) that indicated that most of the time, the subset skill remained approximately 
the same as that of the full ensemble, and that the technique degraded probability fields more often than 
it improved them. Further, the best member rarely added value in the opinion of participants, and in fact 
detracted from the overall forecast guidance most of the time.  While further objective analysis of the five 
weeks of cases is planned, an initial assessment reveals that the cross-system application of the subsetting 
process likely suffers from biases in the different systems. In particular, ensemble sensitivity fields become 
inflated in areas of under-dispersiveness, substantially overweighting subsetting projections there. This 
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tended to occur here as TTU surface fields (e.g. 2-meter temperature) with too little spread caused the 
subsetting procedure to choose HRRRE members with the smallest surface field errors (which can have 
their own bias issues). Addressing this issue will be a primary focus in the near future. 
 

 

Figure 14 Breakdown of participant responses to the survey question: “The skill of the ensemble subset relative to the 
full ensemble is…” [a] better, [b] worse, or [c] about the same. 

 

 

Figure 15 Breakdown of participant responses to the survey question: “The forecast guidance provided by the ‘best 
member’ ________ the overall forecast guidance” with choices including [a] adds; to, [b] detracts; from, or 
[c] neither adds nor detracts; to or from. 
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 A5) CLUE ENSEMBLE HAIL GUIDANCE 
 
 During the 2020 SFE, participants evaluated multiple methods for verifying hail forecasts. Hail 
forecasting – much like forecasting of all convective hazards – requires forecasting not only hazard 
occurrence, spatial location, and timing, but also hazard intensity (in this case, hail size). Hail forecast 
verification can choose to focus on each aspect individually, attempt to synthesize them all, or fit 
somewhere in the middle. For this experiment, the focus was on learning which of those aspects of a 
forecast HWT participants found most critical to skill when determining a “good” hail forecast. 
 

 

Figure 16 Verification of 1.5” hail forecasts from each of the three models, Thompson, Machine Learning, and CAM 
HAILCAST, from the week of 24-28 May 2020. (a) Performance diagram validating peak sizes from identified 
and matched forecast and observed objects. (b) Reliability diagram validating probabilistic ensemble 
forecasts of 1.5” hail within a 40-km radius of each grid point. 

 
Participants were presented daily figures of ensemble maximum hail size, overlaid with 

probabilities of 1” or 2” hail, from three different hail forecasting methods: the CAM HAILCAST hail model 
(Adams-Selin and Ziegler 2016; Adams-Selin et al. 2019), the Thompson hail forecasting method that 
extracts sizes directly from the microphysical parameterization, and a machine learning method (Gagne 
et al. 2017; Burke et al. 2020). The ensemble used for these methods was the High-Resolution Rapid 
Refresh Ensemble, or HRRRE. Multi-Radar Multi-Sensor Maximum Estimated Size of Hail (MRMS MESH; 
Smith et al. 2016) estimates of 1” and 2” hail occurrence was available as an overlay and validation source. 
At the end of the week, participants were presented with six diagrams evaluating different aspects of each 
model’s week of hail forecasts.  An example of two of these diagrams is pictured in Figure 16.  Each 
diagram used different verification methods as well as varying spatial and/or temporal scales over which 
the verification was performed. 
 Half of the diagrams presented results from new updates added to MODE (Method for Object-
based Diagnostic Evaluation) within METplus that identifies forecasted and MRMS MESH hail swaths, 
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matches them based on swath distances and internal characteristics, and then compares peak hail sizes 
within swath matches (Fig. 16a). For example, if the peak sizes in both swaths are larger than 1.5”, that is 
considered a “hit” in a typical confusion matrix resulting in a Probability of Detection (POD) of 1 and a 
False Alarm Rate (FAR) of 0. That result would be plotted as a perfect forecast in the upper right corner of 
a performance diagram (Roebber 2009). Only matched swaths were evaluated. In other words, this 
verification method focused on the forecast of hail size, not its location, in order to separate the skill of 
the underlying HRRRE in producing convection with the skill of the hail models in specifically forecasting 
hail size. 
 Naturally, spatial location is also likely to be of concern when presented with a hail forecast. To 
verify those aspects, reliability diagrams (Fig. 16b) were created to verify the location and timing of the 
1.5” hail forecast via a grid-based method. The ensemble probability of occurrence of 1.5” hail within a 
40 km radius of each model grid point was calculated, smoothed with a Gaussian smoother, and then 
compared to the gridded MRMS MESH. The reliability diagrams plot the observed frequency against the 
forecast probability of 1.5” in hail; a perfectly reliable forecast would follow the diagonal. Thus, while hail 
size is a factor in this verification method, the location of the convection is also included. 
 Finally, to verify model forecasts temporally, verification was performed over three different 
temporal and spatial scales. The first pair of performance and reliability diagrams (also shown in Fig. 16) 
verified forecast and observed hail sizes that had been aggregated over a 24-h period before being 
compared. The MODE object-matching configuration was designed to match hail swaths produced by 
supercell/multicell families or a single MCS; the neighborhood verification was conducted as described 
above with a 40-km radius. The goal of this configuration was to evaluate forecasts on the same spatial 
and temporal scale as a convective outlook. The second pair of diagrams verified hail sizes aggregated 
over a 6-h period with the same object-matching configuration; this configuration goal was verification 
on the scale of a watch. Finally, the third pair of diagrams verified hail sizes aggregated over a 1-h period, 
used an object-matching configuration designed to match single storm hail swaths, with a 10-km 
neighborhood radius. The goal of this configuration was warning-scale verification. 

In order to evaluate participants’ opinions on the different verification methods, they were asked 
the following questions at the end of each week: (1) What do you mean when you say a 1.5” hail forecast 
is “good”? Do you think any of these figures successful capture your opinion of the skill of the two different 
1.5” hail forecasting methods over the course of the week? Why or why not? (2) Do you think validating 
hail forecasts over different time/spatial scales is helpful? How effective at capturing hail forecast 
performance over the different time/spatial scales do you feel the three pairs of figures are? 

For Question 1, participants expressed a range of opinions about the contents of a “good” hail 
forecast, as shown below in Figure 17. The total number of responses received over the course of the 
experiment to the first question was 44, although it should be noted that not all responses answered each 
of the specific questions above. An emphasis on “correct location” was noted most frequently – in 30 of 
44 responses (Fig. 17a). Half as many responses (15) noted the importance of size, and only 6 responses 
found timing to be important. Of the participants concerned with hail size, several noted they would 
consider a hail size forecast of within 0.5” of the observed reports as “good”. 
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Figure 17 (a) Table showing number of responses to question (1) within each category. Total number of responses 
was 44. Participants could provide multiple categories listed here within one response. (b) Specific 
breakdown of responses within the “correct size” and “correct location” categories in (a). In the first (second) 
column all answers were concerned with correct location of the forecasted storm (probabilities). The blue 
portion of the columns represent responses that did not include hail size as important; the orange portion 
did include hail size as important. 

 
The correct size and location responses were further analyzed for overlap among responses (Fig. 

17b). “Correct location” could be divided into two groups of emphasis: correct forecast of individual storm 
location, and correct forecast placement of the ensemble probabilities of 1.5” hail (Fig. 17b). Responses 
focusing on individual storm location often also provided what they considered to be a reasonable spatial 
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error threshold: for example, “within 2 or 3 counties” or “within 25-50 miles”, although it was noted that 
forecasting within urban areas requires more precision. Distinguishing hail-producing ability among 
multiple CAM-forecasted convective cells was also desired. Responses concerned with accuracy of storm 
location were mostly also concerned with accuracy of forecasted hail size (8 of 12 responses). 

Conversely, responses focusing on the ensemble probabilities of 1.5” hail wanted to see a high 
POD with a small area of FAR, with a goal of focusing attention on the regions with the highest probability 
of hail. This group of responses was largely concerned with model-predicted regions of high forecasted 
probability of hail, on the order of 100-200 km, in which hail did not occur. Only 3 of 18 “correct location 
of probability” responses also mentioned accuracy of size in their response. 

Not all responses mentioned the performance diagram and reliability figures or conveyed the 
participants’ opinions on their usefulness; additionally, during the first week the figures were created after 
the scheduled response period. However, of the responses that mentioned the figures (13) all stated they 
found the figures helpful, and by the last week of the experiment participants were expressing their 
opinion of a good hail forecast solely in the context of the figures! Several (5) participants found the 
performance diagrams conveyed skill more clearly, mentioning ease at determining over- and under-
forecasting; a few requested displays of additional size thresholds. The responses noted a “lack of signal” 
from the reliability diagrams: one partial explanation for this response was that the gridded machine 
learning probabilities were not available for display in the reliability diagrams throughout the SFE. 
Interestingly, the responses favoring the performance diagrams were not limited to those who considered 
either correct storm location or correct probabilities more important; participants with different ideas of 
what constituted a “good” hail forecast nevertheless found the performance diagrams helpful. 
 The results from Question 2 were overwhelmingly in favor of verification statistics calculated over 
a range of spatial and temporal resolutions with no responses opposed. Participants liked having 
verification conducted over 24-h time periods to understand the full storm system as an event, as well as 
periods smaller than 24 h to understand the model’s effectiveness at forecasting the evolution of the 
storm system. Many responses (8) suggested 4 h as a preferred resolution as opposed to the 6 and 1 h 
shown here; a few commented that expecting accuracy on a 1-h timescale is too unrealistic for 24-36 h 
forecasts.  

All responses that expressed an opinion on the figures (23, save 1 concerned with sample size) 
found them helpful for understanding model performance over the different spatial and temporal scales. 
Again, a few respondents (4) expressed preference for the performance diagrams citing faster 
interpretation; none expressed preference for the reliability diagrams. 
 The verification statistics discussed above were calculated for the full extent of the SFE and are 
displayed in Figure 18. The performance diagrams (Figs. 18a-c), show the machine learning model with 
largest Critical Success Index (CSI) but with a high size bias. (Note that because only matched objects are 
being evaluated in these diagrams, a high bias is indicative of a high size bias, not an overforecast in 
occurrence.) CAM-HAILCAST had the next largest CSI, with a bias closer to 1. Finally, the Thompson 
method showed a lower CSI, again with a bias closer to 1. Interestingly, the machine learning model 
showed an improvement in bias as the temporal interval shrank to 1 h (Fig. 18c) and the Thompson model 
improved in CSI. These results suggest that the machine learning model struggled with total event hail 
sizes but more successfully captured the temporal evolution of the storm systems. Conversely, CAM 
HAILCAST more successfully captured total event hail sizes but struggled with the temporal evolution. 
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Figure 18 (a-c) Performance diagrams displaying skill of forecast hail swath objects aggregated over (a) 24-, (b) 6-, 
and (c) 1-h intervals as described above. (d-f) Reliability diagrams for gridded forecast hail probabilities 
aggregated over (d) 24-, (d) 6-, and (f) 1-h intervals and neighborhoods of (d) 40-, (e) 40-, and (f) 10 km.   

 
 During the 2020 SFE, participants were asked to evaluate not only hail forecasts, but also the 
methods for verifying the hail forecasts themselves. Participants found location, size, and timing all 
important constituents of a “good” hail forecast, in that order. Location, however, could refer to specific 
storm location, in which case hail size was also an important part of the forecast, or the location of the 
ensemble probabilities, in which case hail size was not as frequently included. These results suggest that 
participants were considering two different forecast use cases when responding about a “good” hail 
forecast: a probabilistic “convective outlook” style forecast, and a deterministic convective cell-based 
forecast. The cell-based forecast use case appeared warning-like in its desire for size accuracy (e.g., hail 
size within 0.5”), but was more forgiving in spatial accuracy (e.g., 25-50 miles or 2-3 counties). These two 
different theoretical use cases individually developed by participants point to the need for verification to 
take place over different spatial and temporal scales. To that end, participants were particularly excited 
about additional verification by varying spatial and temporal resolution. All participants responding about 
the figures found them helpful, with partiality shown to the performance diagrams due to ease in 
interpretation. By the end of the experiment some of the participants even used the figures to discuss the 
success of the hail forecasts being evaluated. 
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 A6) CLUE FV3-SAR PHYSICS, DATA ASSIMILATION, & VERTICAL LEVELS 
 
 With the adoption of the FV3 as the dynamical core for the Unified Forecast System (UFS) 
framework, the SFE has been involved in testing FV3-based CAMs to determine the optimal configuration 
of an FV3-based CAM for forecasting severe convective storms, as well as testing the sensitivity at CAM 
scales of the FV3 core to different parameter adjustments. The A6 and A7 comparisons tested the impact 
of multiple factors on forecasts from regional FV3-based CAMs provided by GSL, NSSL, and EMC. The first 
comparison focuses on the impact of advanced physics packages, data assimilation, and vertical levels 
using models provided by NSSL and EMC. Pairs of models could be compared, including configurations 
that were identical except for the physics packages used (FV3-EMC SARX used more advanced 
microphysics and PBL parameterizations then FV3-EMC SAR), configurations that differed only in the 
number of vertical levels (FV3-EMC SARX had 50 vertical levels, while the FV3-NSSL SAR had 80 vertical 
levels), and a pair that differed in the addition of hourly DA over the 6-h prior to forecast launch (FV3-EMC 
SAR DA compared to FV3-EMC SAR).  
 Unlike in previous years, participants were asked about the reflectivity and 2-5 km UH fields at 
three specific times during the convective life cycle: 1800, 2300, and 0400 UTC.  At all times, but 
particularly later in the convective cycle, participants preferred the EMC FV3-SARX to the EMC FV3-SAR, 
which has more advanced physics packages (Fig. 19a). Mean and median values were higher in the SARX 
at 2300 UTC and 0400 UTC. The EMC FV3-SARX has the same physics as the NSSL FV3-SAR, but the NSSL 
FV3-SAR has more vertical levels than the EMC FV3-SARX. These increased vertical levels did not have 
much of an impact on the subjective ratings of simulated composite reflectivity and UH, as the 
distributions were very similar between the two models (Fig. 19b). However, a preliminary look at 
sounding structure in the two models suggests that the increased vertical levels in the NSSL FV3-SAR may 
better depict the vertical structure of the atmosphere, including aspects such as inversion structure. 
Further sounding analysis is planned for future SFEs. Data assimilation appeared to have some impact on 
the forecasts, with lower scores for the EMC FV3-SAR DA reflectivity and UH at 1800 UTC and 2300 UTC 
(Fig. 19c). At 0400 UTC, the EMC FV3-SAR DA generally scored higher than the EMC FV3-SAR. However, 
due to the limited availability of the EMC FV3-SAR DA and subsequently smaller case sample size, these 
results may not be as certain as the other comparisons herein. In their comments, participants noted 
higher reflectivity and more convective coverage in the NSSL FV3-SAR and the EMC FV3-SARX, which was 
mentioned as both a positive (capturing intensity of storms better) and a negative (too many intense 
storms with high simulated reflectivity values when storms in reality were weaker and not widespread). 
Participants also noted that storms in the EMC FV3-SAR were overly smoothed, and often commented 
that it did not do as well as the other models in this comparison.   
 When asked overall which model best depicted the convective evolution of the day, the NSSL FV3-
SAR and EMC FV3-SARX were the most frequently chosen options (Fig. 20), indicating that the advanced 
physics parameterizations resulted in better forecasts of severe convection. In a few cases, participant 
comments indicated that the NSSL FV3-SAR and the EMC FV3-SARX tended toward too discrete and too 
cellular storm modes compared to observations. 
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Figure 19 Participant ratings of the composite reflectivity and UH at three different times comparing models with (a) 
different physics parameterizations, (b) different numbers of vertical levels, and (c) with and without a data 
assimilation cycle. 

 

 

Figure 20 Participant responses to the question: “Which deterministic CAM(s) best captured the convective evolution 
(i.e., timing, CI, convective mode) through the entire forecast run?” 
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 Environmental variables (2-m temperature, 2-m dewpoint, and SBCAPE) were evaluated at two 
times: 1800 and 0000 UTC.  For environmental variables, the more advanced physics schemes seem to 
have less of an impact on the subjective skill of the forecasts, with the EMC FV3-SAR and the EMC FV3-
SARX having very similar means (Fig. 21a). However, the EMC FV3-SARX does have higher 25th and 75th 
percentile values at 0000 UTC, perhaps indicating the influence of convection. As in the reflectivity and 
UH evaluation, increased vertical levels do not have much of an influence on the 2-m temperature, 2-m 
dew point, or the SBCAPE (Fig. 21b), though the NSSL FV3-SAR does have a slightly higher mean than the 
EMC FV3-SARX at both 1800 UTC and 0000 UTC. Relative to the reflectivity and UH results, DA appears to 
either have little effect (at 1800 UTC) or provide a slight improvement (at 0000 UTC) in the environmental 
variables (Fig. 21c). The sample size issue discussed previously regarding the DA comparison applies here 
as well. Participant comments frequently noted biases in all of the models, with cool temperatures, low 
instability, and high moisture biases being mentioned for all available models. Participants also noticed 
that on occasion, the 2-m temperature and 2-m dewpoint were not too far off, but the SBCAPE differed 
greatly from observations, leading to the conclusion that differences aloft were having a big impact. When 
differences were mentioned between the models, they were similar to the following comment: “EMC 
SARX and NSSL SAR appear to do better with environmental conditions (not storm altered), while EMC SAR 
does better with temperature and dewpoint inside of cold pools (especially with the original MCS.)”  
 

 

Figure 21 As in Figure 19, except for 2-m temperature, 2-m dewpoint, and SBCAPE 
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 A7) CLUE FV3-SAR IC, HORIZONTAL ADVECTION SCHEME, & LAND SURFACE MODEL 
 
 The second comparison to look at the effects of different configuration details on a regional FV3-
based CAM tested the impacts of initial conditions, diffusivity settings, and the land-surface model (LSM) 
using models provided by EMC and GSL. These models were configured such that two pairs of models 
identical but for the diffusivity settings and two pairs of models identical but for the ICs used could be 
compared, as well as one pair of models that used different LSMs (Fig. 22). As in prior comparisons, 
participants were asked to evaluate the composite reflectivity and UH at three times, and the 2-m 
temperature, 2-m dewpoint, and SBCAPE at two times during the forecast. Since one of the models 
involved in this comparison, the EMC FV3-SARX, was repeated from A6, participants were reminded of 
their ratings of the EMC FV3-SARX when rating the remaining four models.  
 

 

Figure 22 An annotated example of the panels participants evaluated. Colored arrows indicate the differences 
between pairs of models. Annotations cover a sixth panel, which showed radar observations during 
participant evaluations. 

 
 Differences between composite reflectivity and UH forecasts were relatively minimal (Fig. 23), 
with the exception of the EMC FV3-SARX generally performing the best. The 0400 UTC ratings differed the 
most between forecasts. The HORD=5 option scored higher than the HORD=6 option, indicating that less 
diffusivity scored higher for both sets of ICs. For both diffusivity settings, the GFS ICs scored higher than 
the HRRR ICs, with the difference in mean score being approximately as large as the difference between 
the mean scores of different diffusivity options. Therefore, from these results, it seems that the diffusivity 
option and the ICs selected have about the same impact on the subsequent reflectivity and UH forecasts. 
In terms of the LSM comparison (the EMC FV3-SARX and the GSL FV3-SAR with GFS-ICs and HORD=6), the 
NOAH LSM in the EMC FV3-SARX performed better than the RUC in the GSL FV3-SAR versions.   
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Figure 23 Participant ratings of the composite reflectivity and UH at three different times comparing models with 
different diffusivity settings, different initial conditions, and different LSMs. 

 
 When asked which model performed the best in terms of overall convective evolution, 
interestingly the GSL FV3-SAR with HORD=5 and GFS-ICs was selected most frequently, despite its lower 
ratings compared to the EMC FV3-SARX (Fig. 24). Comments suggest that the participants may have been 
focusing mainly on the GSL models for this comparison, which may in part be due to the labels clearly 
describing the differences between these configurations. Data availability issues also frequently were 
mentioned in the comments. Initial conditions seemed to be where participants noted the largest 
differences, but in the discussions the large differences were not always favoring the HRRR-ICs or the GFS-
ICs in particular. 
 

 

Figure 24 Participant responses to the question: "Which deterministic CAM(s) best captured the convective evolution 
(i.e., timing, CI, convective mode) through the entire forecast run?" 

 
 For environmental variables, larger differences were seen at 0000 UTC compared to 1800 UTC 
(Fig. 25), perhaps due to the effects of convection. In this case, the HRRR-ICs performed better than the 
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GFS-ICs, opposite to what was found for the composite reflectivity and UH (Fig. 23). However, the means 
were very close, so this difference is likely insignificant. Similarly, there was almost no difference in the 
ratings for the different diffusivity settings. Once again, the NOAH LSM in the EMC FV3-SARX 
outperformed the RUC LSM in the GSL FV3-SAR with GFS-ICs and HORD=6. Participant comments support 
the HRRR-ICs scoring slightly higher; a few comments point to the ability of the HRRR-ICs to help negate 
the known cool and moist bias of the FV3 core. 
 

 

Figure 25 As in Figure 23, but for 2-m temperature, 2-m dewpoint, and SBCAPE.   
 
 Overall, the summary impacts of model configuration choices that impact the performance of 
FV3-based CAMs from A6 and A7 are, in order: 
 

• Advanced physics suites – large improvement 
• NOAH LSM – improvement 
• Increased vertical levels – small improvement (mostly at earlier times) 
• Less diffusivity – small improvement 
• Initial conditions – large impact on subsequent forecasts, but no set of ICs performed 

consistently better 
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 A8) MESOSCALE ANALYSIS 
 
 Two different versions of 3D-RTMA were subjectively evaluated by participants during the 2020 
SFE.  The evaluation was performed to assess the quality and utility of these analysis systems for 
situational awareness and short-term forecasting of convective-weather scenarios. One version was 
provided by GSL and used the GDAS for background error covariance information in the hybrid DA system, 
and the other version provided by EMC used the HRRRDAS (i.e., convection-allowing data assimilation 
system) for background error covariance information. The 15-minute output data were examined during 
the 18-03 UTC period on the next day (Fig. 26).  The goal was to assess whether information from a CAM 
ensemble (i.e., HRRRDAS) can improve the analysis for short-term weather forecasting 
applications.  Overall, both versions of the 3D-RTMA were subjectively similar to one another, with 
participants most commonly rating them “about the same” (Fig. 27).  Not surprisingly, the largest 
differences were often in or around areas of convection and/or in areas with limited surface 
observations.  In terms of overall performance for situational awareness in short-term convective 
forecasting, both systems performed well.  The primary issues/artifacts noted in the comments from 
participants were 1) local maxima/”bullseyes” at some locations/times in different surface-based fields 
and 2) a discontinuity in the temporal evolution of the analysis fields going from the 15-minute updates 
at 15, 30, and 45 minutes past to the top-of-the-hour analysis (i.e., drift and reset). 
 

 
Figure 26 Website comparison example for the 3D-RTMA.  The EMC version is in the left panel, the GSL in the middle, 

and the difference (EMC-GSL) in the right.  The 2-m temperature analysis valid at 0000 UTC 21 May 2020 is 
shaded (left two panels - 40 dBZ reflectivity contours).  The difference (analysis-obs) at METAR sites is shown 
by the size and shading of the dots. Corresponding 2-m temperature difference (shaded) on the right panel. 

 

 

Figure 27 Participant subjective ratings of whether the EMC version of 3D-RTMA was “much better”, “slightly better”, 
“about the same”, “slightly worse”, or “much worse” than the GSL version of 3D-RTMA. 
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 A9) GLM LIGHTNING DATA ASSIMILATION 
 
 This experiment focused on the assimilation of recently available total lightning data from the 
Geostationary Lightning Mapper (GLM) aboard the Geostationary Operational Environmental Satellites 
(GOES) 16 (Goodman et al. 2013). The assimilation exercise employed the GLM “flashes”, a variable more 
closely related to flash initiation locations and, thus, provides an estimated measure of flash origin 
densities (per unit time) when tallied and projected onto the model grid. Additional GLM variables related 
to the horizontal extent of flashes such as “events”, will be considered in follow-on work in addition to 
GLM data from GOES-17, from which lightning coverage was shown to be superior to GOES-16 in some 
portions of the western US, particularly the northwest. One of the advantages of the GLM lies in its ability 
to detect the presence of lightning-active (mixed-phase) convection over vast geographical areas with 
limited observations from ground-based platforms (e.g., radars, METARS, soundings). Thus, for this 
evaluation, the DA exercise were focused over areas known to suffer from paucity in radar coverage, such 
as the mountainous west and oceanic regions within the CLUE domain. To gauge the potential benefit of 
GLM lightning DA over routinely available level II 88D radar data (reflectivity factor + Doppler radial winds), 
this evaluation primarily focused on two DA experiments: the first labeled “GLM” assimilating both GLM 
and level II radar data and a second labeled “noGLM” assimilating only level II radar data (e.g., Fig. 28). 
 

 

Figure 28 Horizontal cross sections of composite reflectivity fields (dBZ) at 1-h forecast for the GLM (top left), noGLM 
(top right) DA experiments, 2300 – 0000 UTC accumulated GLM flash density used during the DA (bottom 
left, shown here on a pseudo GLM 10x10 km2 grid for better visualization of the contours) and observed 
composite reflectivity fields from NSSL’s MRMS product (bottom right).   
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 For subjective evaluation of the forecasts during the SFE, the experiments were complemented 
by radar observations. The observed GLM flash densities used during the 1-h assimilation window prior 
to the forecast (i.e., 3DVAR analysis), were also provided as a guidance to users and forecasters for 
defining the location of the evaluation domain. If the GLM indicated the presence of lightning over either 
the mountainous west or over oceanic regions, the primary domain used for this evaluation (labelled 
domain #3) was placed over these locations.  The domains used for the other model evaluation and 
forecasting activities, which typically included GLM-active areas over the CONUS, were also available for 
further guidance.   

The modeling vehicle used for these experiments was the quasi-operational HRRRv4 code based 
on WRF-ARW V3.9.1.1 kindly provided by Ming Hu and colleagues at GSL. These SFE simulations mimicked 
the real time HRRR settings by downscaling RAPv5 input data for the initial conditions and by employing 
GSL’s physics settings and CLUE grid specifications. 

The 3DVAR code that was coupled with the HRRRv4 model is NSSL’s Experimental Warn-on-
Forecast System for 3DVAR (NEWS3DVAR, Wang et al. 2019), which is based on a 3DVAR DA system 
initially developed for the Advanced Regional Prediction System (ARPS) (Gao et al. 1999; Xue et al. 2001). 
The lightning DA procedure follows those described in Fierro et al. (2019) wherein modeled water vapor 
mass mixing ratios are adjusted (increased) towards near saturation values within each column 
characterized by nonzero GLM flash densities. To curtail imbalances resulting from the mass increase 
incurred during the 3DVAR analysis, the water vapor adjustments are confined within a 3-km deep layer 
above cloud base (surrogated by the lifting condensation level). The single deterministic simulations (i.e., 
no ensembles) used successive 3DVAR analysis cycles at a 15-min frequency between 2300 UTC on the 
previous day and 0000 UTC (see 1-h accumulated GLM flash density fields in Fig. 28). To further reduce 
the impact of Qv-induced mass-wind imbalances and potential wet biases in the forecasts, the initially 
coarser ~10x10 km2 GLM densities (shown in Fig. 28) were thinned down to that of the grid spacing of the 
simulation domain, namely 3x3 km2. 
 Survey analysis from SFE participants performed between 27 April and 28 May are summarized 
herein (Fig. 29) for the three following questions labelled Q1, Q2 and Q3: 
 
• Q1: Focusing on the simulated composite reflectivity field, forecasts of the number, location, 

intensity, and mode of convective storms are ______ between the runs with and without GLM DA. 
 

• Q2: Although observations may be limited in this region to perform a full assessment, please 
complete the following statement:  The short-term forecasts of thunderstorms are ______ when 
assimilating GLM data. 
 

• Q3: If the forecasts of thunderstorms are different between these DA runs, how long into the 
forecasts do those differences last? 
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Figure 29 Bar charts and percentiles of the responses given by the SFE participants to questions (a) Q1, (b) Q2 and (c) 
Q3 for the GLM lightning data assimilation experiment. 

 
 Before interpreting the participant’s responses in this survey, it is relevant to re-iterate and 
underline that the main goal of this modeling exercise was to evaluate the degree of added benefit 
incurred by the assimilation of two-dimensional GLM flash density rates over volumetric level II radar data 
in areas of the country suffering from poor radar coverage. Given that vast amount of storm-scale 
kinematic and microphysical information contained in 3D radar sweeps compared to the information 
provided by 2D flash density fields, improving storm-scale radar DA forecasts is, by design, a challenging 
task to achieve. For Q1, the survey in Figure 29a reveals that while 54% did not report any noteworthy 
differences in forecast composite reflectivity fields between the two experiments (i.e., GLM vs noGLM), a 
sizeable portion (46%) did notice some differences. The survey from Q2 in Figure 29b is intended to reveal 
if any of the differences in composite reflectivity fields reported in Q1 were either positive or negative 
with a viewpoint/theme centered on overall forecast skill. Positive improvements were noted 36.2% of 
the times compared to 8% for negative ones. Not surprisingly, the fraction of participants not reporting 
any changes in the forecast in the survey for Q2 were about the same as in Q1 (Figs 29a, b). Focusing the 
participants’ attention on the forecast improvements they documented in Q2, a noteworthy fraction 
indicated that these were generally maintained up to either 2-h (16%) or as far as 12-h forecast (13%). 
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This result favoring the two near opposite ends of the forecast length spectrum is generally consistent 
with earlier proof-of-concept work with this GLM DA algorithm: (i) Short-term forecast improvements for 
most convective regimes were generally lost after 2-3-h forecasts due to inherent biases and errors 
contained in the initial conditions downscaled from larger-scale models (here the RAPv5 data) and (ii) 
forecast improvements beyond 3-h were generally achieved for more organized convective systems such 
as squall lines, QLCSs, MCSs or MCCs, which are of common occurrence during the Spring over the eastern 
CONUS. Rationales for (ii) is that: 1) MCSs evolution is primarily governed by the location and timing of 
the incipient cold pool, which the GLM DA is able to capture during the 3DVAR analysis and 2) the large 
scale conditions favoring organized convective systems such as: stationary boundary, unidirectional shear, 
large areas of warm, humid, unstable air mass, low level jet etc. are generally well captured by larger-
scale models. 
 To place the subjective evaluations in Fig. 29 into context, preliminary analyses of the SFE runs 
are briefly described here focusing on: (i) 00-06UTC accumulated precipitation summed over all the 29 
forecast days covering the duration of the SFE (Fig. 30) and (ii) Roebber performance diagrams for 
aggregate contingency statistics (Fig. 31).  
 

 

Figure 30 00-06UTC accumulated precipitation aggregated over all the 29 forecast days during the SFE wherein; 
CTRL=control (no DA), RAD (only level II radar data were assimilated = noGLM experiment on the SFE page), 
RAD+GLM (both radar and GLM were assimilated = GLM experiment on the SFE page) and GLM (GLM DA 
only). 

 
 When examining Fig. 30, it becomes evident that, despite an overall relatively good performance 
of the CTRL runs (no DA), the assimilation of GLM data had a more noticeable aggregate impact over the 
southeastern US (including its oceanic regions) and the eastern portions of the Sierra Madre in Mexico. 
Aggregate rainfall differences over the mountainous west remain overall comparatively small and, thus, 
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will be analyzed on a case-to-case basis. Despite an overall broadly consistent topology of rainfall contours 
in all experiments, Fig. 31 indicates that, in the aggregate, hourly precipitation forecast skill for the GLM-
based runs at 1, 3 and 6-h remain overall superior to that of CTRL, illustrating the benefit of assimilation 
GLM and/or radar data. Consistent with previous work (Fierro et al. 2019, Hu et al. 2020), the best skill 
was achieved when both datasets were employed during the DA.  
 

 

Figure 31 Roebber performance diagrams for selected hourly precipitation thresholds at 1, 3-h and 6-h forecast 
aggregated over all 29 forecast days. 
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b) Model Evaluations – Group B  
 
 B1) CALIBRATED, MACHINE-LEARNING, & SPC TIMING GUIDANCE 

Participants were asked to evaluate a suite of 24-hour and 4-hour guidance forecasts for severe 
weather hazards including tornadoes, wind (50 kts), and hail ( 1.0-in).  All guidance products were based 
on forecast output from the operational HREFv2.1.   Using storm reports and WFO warnings from the time 
window coincident with the forecast period, participants scored forecasts on a scale of 1 to 10 (with 10 
indicating an excellent forecast).   

 i) 24 h Tornado Forecast Guidance  
 

Five tornado guidance products were evaluated:   HREF/SREF-calibrated (“HREF/SREF Cal”, Jirak 
et al. 2014), two calibrated methods using an STP distribution within a 40-km radius domain defined either 
over a circle (“STP Circle”, Gallo et al. 2018) or the inflow quadrant (“STP Inflow”, Jahn et al. 2020), the 
STP-calibrated inflow method for which regions associated with an MCS are filtered (“STP Inflow MCS 
Filter”), and a ML model based on a random forest (RF) method (“ML RF”, Loken et al. 2020). 

 

 

Figure 32 Violin plots showing distributions of subjective ratings for 5 tornado guidance products (see text), median 
(white dot), mean (white line), interquartile range (wide black vertical line) and 1.5 interquartile range (thin 
black line). 
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Subjective evaluations of the five products are summarized in Figure 32 using violin plots, which 
are based on 227 to 233 responses per product.   The mean and median values across all products are 
between 5 and 6, which suggests that no one product stands out as convincingly superior or inferior.  The 
STP-calibrated products (left 3 plots of Figure 32) all register a mean value of 5.8, which is slightly higher 
than the HREF/SREF and ML products.   A reduced performance by “ML RF” may be due to several cases 
for which it generated probability contours significantly higher than the other methods and inconsistent 
with observed tornado frequency.  “STP Circle” and “STP Inflow” register near identical means; however, 
evaluator comments often noted that “STP Circle” produced a larger false alarm area than “STP Inflow”.  
This may be the reason for more responses at 9 and above for the latter than the former.  A relatively high 
standard deviation of 2.49 suggests a lower consistency in the perceived value of the HREF/SREF forecast 
guidance; certain cases it performed the best and certain cases the worst.   The “STP Inflow MCS Filter” 
were near identical to “STP Inflow” results and provided negligible improvement in forecast guidance. 
  
 ii) 4 h Tornado Forecast Guidance 
 

Two of the calibrated methods, “STP Cal Circle” and “HREF/SREF Cal”, were used to generate 
rolling 4-h probabilistic tornado guidance and were evaluated with SPC Timing Guidance products based 
at 0600 and 1300 UTC (Fig. 33).  SPC Timing Guidance products are generated using a temporal 
disaggregation method using HREF/SREF calibrated guidance as applied to the operationally issued 
convective outlooks at 0600 and 1300 UTC (Jirak et al. 2012, 2020).  Thus, they are a blend of the human 
forecast and the first-guess guidance.  The SPC Timing Guidance products were rated higher (mean scores 
greater than 5.98 and standard deviations less than 2.43) than the calibrated product based on HREF/SREF 
alone (mean score of 5.37 and standard deviation of 2.65).  The “STP Cal Circle” product standard 
deviation of 1.93 indicates its performance was the most consistent among the 4 products.   Its subjective 
rating (mean of 5.67) is lower than the SPC Guidance products and greater than HREF/SREF Calibrated. 

 

 

Figure 33 As in Figure 32, but for 4-h tornado guidance products.   
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 iii) 24 h Hail Forecast Guidance 
 

Participants evaluated three methods for producing calibrated 24-h severe hail forecasts. These 
included two ML RF-based methods (“ML Burke”, Burke et al. 2020; and “ML Loken”, Loken et al. 2020), 
and an approach that considers data from both the 0000 UTC HREF and 2100 UTC SREF (“HREF/SREF 
Calibrated”, Jirak et al. 2014).  

ML Loken received the highest mean (6.68) and median (7.0) subjective ratings with the lowest 
standard deviation (1.77) and smallest proportion of low-end (i.e., 1-3) ratings (Fig. 34), suggesting 
consistently strong performance. Ratings for ML Burke (mean 5.72, median 6.0) and HREF/SREF Calibrated 
(mean 5.68, median 6.0) tended to be slightly lower than ML Loken but were still favorable.  

Participants noted that the three methods could provide substantially different forecasts on a 
given day. ML Loken tended to produce broader areas of low-end probabilities, frequently giving it a high 
probability of detection (POD) and making it look most like the practically perfect guidance.  Meanwhile, 
ML Burke tended to give sharper probabilities over smaller regions, which helped forecasters identify 
areas of greatest threat, but generally resulted in lower POD compared to ML Loken. In general, 
participants had high praise for ML Loken, and preferred ML Burke to HREF/SREF Calibrated. 
  

 

Figure 34 As in Figure 32, but for 24 h hail guidance products (see text). 
 
 iv) 4 h Hail Forecast Guidance 
  
 Participants evaluated four methods for producing 4-h calibrated hail guidance. These included 
the “ML RF Burke” (Burke et al. 2020) and “HREF/SREF Calibrated” (Jirak et al. 2014) methods as well as 
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SPC Timing Guidance produced at 0600 UTC (“06Z SPC Timing Guidance”) and 1300 UTC (“13Z SPC Timing 
Guidance”). 

The two SPC Timing Guidance products received the highest mean subjective ratings (6.59 and 
6.31 for the 13Z and 06Z SPC Timing Guidance, respectively; Fig. 35), as well as the smallest rating 
standard deviations (1.66 and 1.70 for the 13Z and 06Z guidance, respectively). Indeed, both SPC Timing 
Guidance Forecasts seldom received ratings below 4 (Fig. 14), indicating consistently strong performance. 
ML RF Burke had mean (5.90) and median (6.0) ratings that were similar to those from the 06Z SPC timing 
guidance but with a larger standard deviation (2.12). Figure 14 reveals that ML RF Burke received many 
ratings at or above 7 but also had a (smaller) local maximum in the rating distribution around 3, suggesting 
mostly strong performance with a few instances of relatively poor performance. Meanwhile, the 
HREF/SREF Calibrated method received the lowest mean (5.19) and median (5.0) subjective ratings and 
had the highest proportion of ratings below 5 (Fig. 35). 

Participants noted that all methods provided useful timing guidance, but the SPC Timing 
Guidance products were the consensus favorite, followed by the ML RF Burke. Participants felt that, 
overall, the SPC Timing Guidance had a larger spatial distribution of non-zero probabilities, which better 
aligned with observed local storm reports (LSRs) and resulted in a higher POD. Participants also felt that 
the SPC Timing Guidance tended to be more accurate than the ML RF Burke and HREF/SREF Calibrated 
methods during both the early and late stages of convective development, with the ML RF Burke and 
HREF/SREF Calibrated methods sometimes introducing (removing) non-zero probabilities too late (early). 
Some participants praised the ML RF Burke method for its tighter probability gradients and higher 
precision compared to the SPC Timing Guidance; they felt the ML RF Burke method could better highlight 
more localized regions of increased threat. However, they noted that ML RF Burke sometimes produced 
relatively high probabilities and did not always highlight a large enough area to capture all LSRs. 

 

 

Figure 35 As in Figure 32, but for 4 h hail guidance products. 
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 v) 24 h Wind Forecast Guidance 
 
 24-h severe wind probabilities were evaluated from the “HREF/SREF Calibrated” (Jirak et al. 2014) 
and “ML RF Loken” (Loken et al. 2020) methods.  While both sets of forecasts had a median subjective 
rating of 6.0, mean ratings were slightly higher for ML RF Loken (6.00 vs. 5.50) with slightly less variance 
(standard deviation of 1.79 vs. 1.90). Moreover, ML RF Loken received a lower proportion of ratings less 
than 4 (Fig. 36), suggesting the ML RF Loken method produced more medium-to-good (i.e., rating 5-8) 
forecasts and fewer low-quality (i.e., rating 1-3) forecasts compared to HREF/SREF Calibrated. 
 Interestingly, participants frequently stated that they gave the two methods similar subjective 
ratings but for different reasons. The ML RF Loken method tended to give broader areas of non-zero 
probabilities, which gave it a better POD but also a higher FAR. Forecasters also commented that, many 
times, the wind probabilities from ML RF Loken seemed too high, although, spatially, the probabilities 
tended to capture the correct axis of LSRs. In contrast, the HREF/SREF probabilities tended to be lower 
and focused over a smaller area, helping forecasters identify areas of the highest concern. However, the 
areas highlighted by the HREF/SREF were sometimes displaced from the main axis of LSRs. Overall, 
participants slightly favored the ML RF Loken method, but many suggested that a blend of the two 
approaches may give the most useful guidance since the methods tended to have different (and 
complementary) strengths and weaknesses. 
 

 

Figure 36 As in Figure 32, but for 24 h wind guidance products (see text).   
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 vi) 4 h Wind Forecast Guidance 
 
 4-h calibrated severe wind guidance was evaluated from the HREF/SREF Calibrated (Jirak et al. 
2014) method as well as the SPC Timing Guidance product produced at 0600 UTC (“06Z SPC Timing 
Guidance”) and 1300 UTC (“13Z SPC Timing Guidance”). 

Overall, both SPC Timing Guidance products had similar mean (6.10 for the 06Z and 5.97 for the 
13Z guidance; Fig. 37) and median (6.0 for both) subjective ratings, while the HREF/SREF Calibrated 
received lower mean (5.00) and median (5.0) ratings. Additionally, the HREF/SREF Calibrated guidance 
received proportionally more low-end (1-3) ratings and fewer high-end (7-10) ratings compared to the 
SPC products (Fig. 16), suggesting participants generally preferred the SPC Timing Guidance products to 
the HREF/SREF Calibrated timing guidance. 
 

 

Figure 37 As in Figure 32, but for 4 h wind guidance products.   
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 B2) CLUE 00Z Multi-Model Ensemble  
 
  The B2: CLUE 00Z Multi-Model Ensemble evaluation was another CAM ensemble 
evaluation similar to the A3 evaluation.  In this evaluation, two single-model, time-lagged ensembles 
(HRRRE and UM; 1800 and 0000 UTC members) were compared to a 0000 UTC multi-model (HRRRE and 
UM) ensemble and a 36-member, time-lagged, multi-model ensemble (Fig. 38). HREF (v2.1 and v3) was 
used as a baseline for performance, as in the A3 evaluation. The B3 evaluation sought to identify the 
relative importance of time-lagging versus multi-model strategies in CAM ensemble performance for 
severe weather forecasting. 
 

 
Figure 38 Example of multi-panel comparison webpage for the 0000 UTC CAM ensemble B2 evaluation during the 

2020 SFE. The 24-h ensemble maximum UH (shaded) and neighborhood probability of UH>99.85th 
percentile (contoured) is displayed for HREFv2.1 (upper left), HRRRE TL-18 (upper middle), UM TL-18 (upper 
right), HREFv3 (lower left), HRRRE+UM (lower middle), and HRRRE+UM TL-36 (lower right) for 22 May 2020. 
Preliminary severe storm reports are also overlaid (wind - blue squares, hail - green circles, and tornado - 
red upside-down triangles). 

 The single-model time-lagged ensembles (HRRRE TL-18 and UM TL-18) performed similarly to one 
another in terms of overall subjective ratings (Fig. 39) with a slight edge in mean rating to the HRRRE TL-
18.  Interestingly, a multi-model combination of HRRRE+UM did not improve the subjective ratings over 
the single-model time-lagged ensembles.  Likewise, combining all of the HRRRE and UM runs together in 
a multi-model, time-lagged ensemble did not improve the probabilistic forecasts, based on the subjective 
ratings (Fig. 39).  The hypothesis going into the SFE was that the multi-model, time-lagged HRRRE+UM 
would produce the best probabilistic forecasts of the CLUE CAM ensembles and approach the skill of the 
HREF; however, that was not the case and indicates the HREF configuration (i.e., multi-model, time-
lagged, multi-physics, and multi-initial conditions) is unique in optimizing probabilistic forecasts for severe 
weather. 
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Figure 39 Distributions of subjective ratings (1-10) by SFE participants of hourly maximum fields for severe weather 

forecasting over a mesoscale area of interest for the forecast hours 13-36 for the B2: CLUE 00Z CAM Multi-
Model Ensemble evaluation (HRRRE TL-18 - light orange; UM TL-18 - green; HRRRE+UM - red; HRRRE+UM 
TL-36 - light red) compared to the HREFv2.1 (blue) and HREFv3 (light blue). 

 
 B3) CLUE 12Z CAM TL-ENSEMBLE 
 
 The third and final CAM ensemble evaluation (B3: CLUE 12Z CAM TL-Ensemble) compared three 
nine-member, single-model ensembles using different time-lagging strategies based at 1200 UTC.  These 
strategies included no time-lagged members (HRRRE), three time-lagged members from each of the 0000, 
0600, and 1200 UTC HRRRE initializations (HRRRE TL-9); and a mix of five deterministic HRRR and four 
deterministic NSSL-WRF configurations each initialized with HRRRv4 initial conditions at different times 
between 0000 and 1200 UTC (HRRR/NSSL WRF-TL9; Fig. 40). 
 

 
 
Figure 40 Example of multi-panel comparison webpage for the 1200 UTC CAM ensemble B3 evaluation during the 

2020 SFE. The 24-h ensemble maximum UH (shaded) and neighborhood probability of UH>99.85th 
percentile (contoured) is displayed for HRRRE (left), HRRRE TL-9 (middle), and HRRR/NSSL WRF-TL9 (right) 
for 22 May 2020. Preliminary severe storm reports are also overlaid (wind - blue squares, hail - green 
circles, and tornado - red upside-down triangles). 
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 As is evident in Fig. 40, the HRRR/NSSL WRF-TL9 ensemble typically had higher UH probabilities in 
daily forecasts compared to the HRRRE or HRRRE TL-9.  Another comment often noted from participants 
was higher POD of severe weather events from the HRRR/NSSL WRF-TL ensemble versus the HRRRE or 
HRRRE TL-9.  The time-lagged HRRRE performed similarly to the 12Z HRRRE according to the subjective 
ratings (Fig. 41), supporting the need to quantify the optimal number of CAM ensemble forecast members 
required at a single initialization time.  The HRRR/NSSL WRF-TL ensemble received notably higher 
subjective ratings overall compared to the HRRRE or HRRRE TL-9, indicating a potentially useful single-
model strategy for configuring a CAM ensemble. 
 

 
Figure 41 Distributions of subjective ratings (1-10) by SFE participants of hourly maximum fields for severe weather 

forecasting over a mesoscale area of interest for the forecast hours 1-24 for the B3: CLUE 12Z CAM TL-
Ensemble evaluation (HRRRE - orange; HRRRE TL-9 - light orange; and HRRR/NSSL WRF-TL9 - gray). 

 
 B4) Deterministic Flagships 
 
 As in previous years, various agencies contributed state-of-the-art deterministic model guidance 
to SFE 2020. These runs were evaluated against the soon-to-be operational HRRRv4 provided by GSL, and 
included a UM core run provided by the Met Office, a global FV3 run provided by GFDL, and two FV3-SAR 
runs provided by EMC and NSSL. Following feedback from prior SFEs, participants were asked to evaluate 
the composite reflectivity and UH guidance at three specific times: 1800 UTC, 2300 UTC, and 0400 UTC. 
These were chosen to represent times near convective initiation, times at the peak of the convective life 
cycle, and times when convection would have either dissipated or grown upscale. Environmental fields 
(2-m temperature, 2-m dewpoint, and SBCAPE) were evaluated at two times: 1800 UTC and 0000 UTC, to 
similarly capture the pre-convective environment and the behavior of the environment influenced by 
convection (e.g., cold pools). 
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Figure 42 Subjective evaluation scores of composite reflectivity and UH from the models in the Deterministic Flagship 
comparison. Black squares indicate the mean score. 

 
 Overall, scores were similar across most of the models at the earliest time (1800 UTC; Fig. 42), 
except for the UM, which scored slightly lower than others. However, at later times (2300 and 0400 UTC), 
the HRRRv4 has much higher ratings than the UM or any of the FV3-based models. Amongst the FV3-
based models, the NSSL FV3-SAR mean ratings were highest at the later times. Many comments indicated 
that the FV3-based models often had too big and too intense of storms, as depicted by composite 
reflectivity.  Despite this overprediction, participants sometimes ranked the NSSL FV3-SAR as slightly more 
realistic than the GFDL FV3 or EMC FV3-SAR.  However, some participants mentioned the NSSL FV3-SAR 
as having too much or too intense convection. Though one of the questions on the survey asked about 
differences between models with different cores, participants often noted that differences within the 
three FV3-based models were as large as the differences between cores. The HRRRv4 and UM were also 
noted as being too slow in a couple instances. Other participants noted that the UM produced too much 
cellular convection, which at times organized upscale where convection did not actually occur. There was 
also a lack of stratiform precipitation in the UM compared to the HRRRv4 and FV3-based forecasts. These 
comments support the findings of which CAM best captured the full convective evolution over the entire 
forecast run, as ~40% of the time participants chose the HRRRv4 (Fig. 43). Following the HRRRv4 in 
frequency of performing best were, in order, the NSSL FV3-SAR, GFDL FV3, EMC FV3-SAR, and UM. 
Participants could choose more than one model, so if two or more models were performing similarly, both 
could be selected. 
 The environmental fields told a similar story (Fig. 44), with the mean HRRRv4 score highest. The 
UM was rated lower than nearly all of the other models at 1800 UTC, but by 0000 UTC had the second-
highest mean rating. This was likely partially influenced by ongoing convection; given the overextended 
coverage of convection in the FV3-based models noted by participants, we would expect more cold pools 
that would lead to larger differences from the observations compared to the HRRRv4 and UM forecasts. 
Also, of note, the UM did not have SBCAPE available for ratings, so its ratings only considered 2-m 
temperature and dewpoint. Participants noted that the GFDL FV3 cold pools and CAPE often closely 
matched observations, although an overall cool and moist bias was once more seen in the FV3-based 
models. These biases led to an overall low instability relative to observations, which often led participants 
to wonder about how the overextended convection seen in the reflectivity and UH panel was supported. 
Conversely, participants also mentioned a warm and dry bias in the HRRRv4 relative to the observations.  
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Figure 43 Participant responses to the question, "Which deterministic CAM(s) best captured the convective evolution 
(i.e., timing, CI, convective mode) through the entire forecast run?" 

 

 

Figure 44 As in Figure 42, but for 2-m temperature, 2-m dewpoint, and SBCAPE.   



 53 

 B5) CLUE CORE AND ICS 
 
 A new comparison for SFE 2020 examined the impact of different initial conditions and model 
dynamical cores by comparing six different model runs. Two models each using the WRF, FV3, and UM 
dynamical cores were run using initial conditions from either the GFS or the UM global models. Similar to 
the other deterministic model evaluations (A6, A7, and B4), participants were asked to evaluate the 
simulated composite reflectivity and UH at 1800 UTC, 2300 UTC, and 0400 UTC to capture a given day’s 
full convective life cycle. They were also asked to evaluate the 2-m temperature, 2-m dewpoint, and 
surface-based CAPE at 1800 UTC and 0000 UTC. Two models from the B4 comparison were also displayed 
in this comparison: the NSSL FV3-SAR (FV3 GFS-ICs) and the UM (UM UM-ICs). Participants were reminded 
of their ratings from the B4 evaluation of these two models and asked only to assign numerical ratings to 
the four new model forecasts. 
 Participants were also asked to evaluate whether differences were larger between models with 
different dynamical cores but the same initial conditions or models with different initial conditions but 
the same dynamical cores. A slider positioned initially between those two options could be dragged to 
one side or the other, with the default indicating that the ICs and dynamical cores appeared to have the 
same impact on the forecasts. Participants differed on what had the most impact on the forecasts, with 
the composite reflectivity and UH fields having larger differences between models with different 
dynamical cores (Fig. 45a) and the environmental fields having larger differences between models with 
different initial conditions (Fig. 45b).  This was demonstrated both in the means, but also in the frequency 
of answers where participants slid the slider fully to the left or to the right, indicating that they clearly saw 
larger differences in one aspect of the model configurations compared to the other. 
 

 

Figure 45 Participant answers to the question, "Did you see more differences between <variable> from models with 
the same ICs and different dynamical cores (i.e., between forecasts in the same column), or between from 
models with the same dynamical core and the same ICs (i.e., between forecasts in the same row)?” 
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 These impressions of relative importance between the dynamical cores and the ICs were also 
reflected in the distributions of the ratings, with larger differences between model cores than between 
initial conditions for the composite reflectivity and UH ratings at all times (Fig. 46). Note that model 
availability for this comparison shifted throughout the SFE, with only 6 days having all 6 models available. 
 

 

Figure 46 Participant ratings of the composite reflectivity and UH forecasts from models with different ICs and 
dynamical cores at (a) 1800 UTC, (b) 2300 UTC, and (c) 0400 UTC. 

 
 Generally, medians were the same for all models, although the UM with UM-ICs and the FV3 with 
UM-ICs each had a time with a lower median score than the other two dynamical cores using the same 
ICs. Across the times, the WRF and FV3 dynamical cores had the highest ratings, with a WRF-based model 
having the highest mean at 2300 UTC (Fig. 46b) and 0400 UTC (Fig. 46c). However, the FV3 with GFS-ICs 
also performed quite well at 1800 UTC (Fig. 46a), with a mean that was approximately equivalent to the 
WRF with UM-ICs. The WRF dynamical core performed better with UM ICs than with GFS ICs, while the 
UM and GFS dynamical cores showed similar subjective performance at 1800 UTC and 0400 UTC. At 2300 
UTC, however, the UM and FV3 both perform best when using ICs from a parent model that shares their 
dynamical core. Among the models using UM ICs, the WRF dynamical core had the highest mean score at 
all times. Among the models using GFS ICs, the FV3 alone (1800 UTC) or the FV3 and the WRF dynamical 
cores (2300 UTC and 0400 UTC) had the highest mean scores. In their comments, participants often 
mentioned differences in timing, coverage, and simulated storm structure as being the aspects of the 
forecasts that differed most. When asked what model overall performed best for convective evolution 
throughout the entire forecast, WRF dynamical cores were more frequently selected than the other cores 
(56% of responses; Fig. 47), followed by the FV3-based models (36% of responses) and the UM-based 
models (9% of responses). These differences were much larger than the differences between ICs, with the 
models using UM-ICs being selected as performing best 54% of the time and models using GFS-ICs being 
selected 47% of the time (Note: percentages do not add to 100% due to rounding). 
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Figure 47 Participant responses to the question: "Which deterministic CAM(s) best captured the convective evolution 
(i.e., timing, CI, convective mode) through the entire forecast run?" 

 
 For the environmental fields, the importance of ICs was perceived to have slightly more of an 
effect than the dynamical cores throughout the entirety of the model forecast. This was particularly 
evident during the daily discussions with participants, as they would often mention the clear differences 
in the environmental fields at early forecast hours (e.g., f01-f03), prior to the hours asked about in the 
survey, which occurred much later in the forecast period.  For the environmental fields, the dynamical 
core performed best with ICs from the same parent model (i.e., UM with UM-ICs and FV3 with GFS-ICs; 
Fig. 48). This trend stood out much more in the environmental fields relative to the composite reflectivity 
and UH fields, with an evident shift in the distributions of the UM and the FV3 with the different ICs used. 
The WRF model showed much less of a dependence on the ICs in the overall subjective evaluation 
distributions, with a slightly higher mean using UM ICs at 1800 UTC (Fig. 48a) and a higher mean using 
GFS-ICs at 0000 UTC (Fig. 48b). Overall, the WRF models had the highest mean rating at 1800 UTC, and 
the UM with UM ICs performed best at 0000 UTC. When asked about what differed between dynamical 
cores, comments highlighted the cool and moist tendencies of the FV3 dynamical core, the warm and dry 
tendencies of the WRF dynamical core, appearance of cold pools linked to small-scale convection in the 
UM, and varying cool pool strength. When asked about what differed between the ICs, participants noted 
that boundary locations differed more as a function of ICs, that GFS-ICs were more often too cool and 
moist, and that the SBCAPE amplitudes varied more as a function of IC rather than dynamical core. 
Participants also noted cases where one aspect of the forecasts seemed to make a large difference earlier 
(typically ICs), but by the end of the forecast the other aspect of the forecasts made a larger difference 
(typically cores).   
 Though the subjective evaluations from these models show small differences in the distributions 
of numerical ratings, large day-to-day variability was evident during the experiment as to the relative 
importance of ICs vs. dynamical core, with no clear sense of what had the highest impact overall by the 
end of the five weeks. This day-to-day variability can be seen by the relatively frequent answering of 
participants at the extreme left or right of the histograms in Fig. 45, as well as the mean values lying close 
to the midpoint of the histograms. Thus, ongoing research will investigate the model performance using 
objective statistics in both the aggregate and on a case-by-case basis, as well as the subjective responses 
in a case-by-case framework. 
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Figure 48 As in Figure 55, but for 2-m temperature, 2-m dewpoint, and SBCAPE at (a) 1800 UTC and (b) 0000 UTC. 
 
 B6) WoFS CONFIGURATONS 
 
 Multiple configurations of the WoFS were tested during the 2020 SFE, including ensemble and 
deterministic configurations. First, participants were asked questions about two WoFS ensembles with 
horizontal grid spacings of 3 km and 1.5 km.  Three different initialization times were evaluated to see 
how WoFS performance changed as initialization times grew later, in addition to comparing the 
performance of the 3 km and 1.5 km resolution ensembles. The 1.5 km ensemble ran for three hours and 
had nine members, compared to eighteen members in the 3 km ensemble, which ran for six hours. 
 Participants were instructed to only consider the first three hours of the forecasts in their ratings. 
For the most part, the 3 km and 1.5 km ensembles performed similarly to one another (Fig. 49), although 
the mean rating for the 1.5 km ensemble was less than the mean rating of the 3 km ensemble at the same 
initialization time. The initialization times also didn’t differ much within each ensemble, although mean 
ratings tended to increase as the ensemble initialization time grew later. This is likely at least partially due 
to the higher likelihood of convection for the WoFS ensembles to assimilate later in the convective day. 
Though the overall ratings don’t show much difference in the distributions between the initialization 
times, looking at differences in the individual participant ratings (Fig. 50) for each case between 
initialization times can help show whether participants increased or decreased their ratings for each 
ensemble with later initializations. The mean change in rating between even the earliest initialization (20z) 
and latest initialization (00z) was zero, but each distribution has some extremes, with later initializations 
performing up to four points better or worse than earlier initializations for both the 3 km and the 1.5 km 
ensembles. However, most of the differences were within a one-point range, indicating that participants 
saw mostly small changes between initializations on a given day.  Outliers occurred when the WoFS began 
picking up on convection, or missed ongoing convection entirely.   
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Figure 49 Subjective evaluation of the hourly maximum UH neighborhood probability fields from the 3 km and 1.5 
km WoFS ensemble forecasts, initialized at three different times. The first three forecast hours of each 
initialization was evaluated. 

 

 

Figure 50 Participant rating differences for various initializations of WoFS forecast. A '0' difference indicates that the 
two initializations were rated the same by a participant on a given day. 
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 In addition to asking participants to provide a 1-10 rating of the usefulness of the WoFS ensemble 
outputs, a few qualitative questions were asked regarding the convective mode and convective initiation 
timing, to help determine whether the higher horizontal resolution of the 1.5 km WoFS ensemble was 
providing better mode information or capturing convective initiation better than the 3 km WoFS ensemble 
(CI is a noted challenge for the WoFS, as found in previous SFEs). Since the 1.5 km ensemble was available 
less frequently than the 3 km ensemble, the following results are presented in terms of frequency of 
response, rather than in raw response counts. 
 When asked how the various ensembles and forecasts were depicting convective mode, nearly 
half of the responses for any ensemble forecast were “Very accurately” (Fig. 51). Later initializations were 
more likely to have a response of “Extremely accurately”, and the 1.5 km 00z initialization of the WoFS 
had the highest frequency of this response. Also, while the 3 km had a few responses of “Not accurately 
at all”, none of the 1.5 km WoFS runs received this answer. 
 

 

Figure 51 Participant responses to the question "If appropriate, how do the following ensembles initialized at XXXX 
UTC depict convective initiation?" 

 
 Perhaps contrary to our expectations, at every initialization time, the 3 km WoFS was more 
frequently rated “About right” for convective initiation time if convection was not already ongoing at the 
start of the forecast (Fig. 52). Convection was ongoing for about half of the forecasts and more frequently 
was ongoing at later initialization times, as expected given the typical diurnal convective cycle. Convective 
initiation was more frequently noted as occurring “Too fast” than “Too slow”, particularly at early 
initialization times. 
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 When asked explicitly if they thought that the 1.5 km ensemble provided value above the 3 km 
ensemble, participants most frequently responded “Might or might not”, followed by “Probably not” (Fig. 
53). Of all forecast initialization times, the 20z forecast seemed to be where the largest differences were 
evident to participants, since this time received the fewest “Might or might not” responses and the most 
“Definitely yes” and “Definitely no” responses from participants. Results are more mixed for the 22z 
forecast, but the 00z forecast shows the most “Might or might not” responses. These results suggest that, 
at least subjectively, the most information to be gained by the higher resolutions may be at the earlier 
forecast times. However, it is not yet clear that the additional information is from better depiction of 
convective mode or convective initiation. One additional caveat to these results is that neighborhood 
probabilities of UH, updraft speed, 10m wind, and composite reflectivity were being compared between 
these ensembles.  Given that higher horizontal resolution leads to different expected values in many of 
these variables, different thresholds were chosen for generating the neighborhood probabilities for the 
1.5 km ensemble (e.g., UH ≥ 400m2s-2) vs. the 3 km ensemble (e.g., UH ≥ 75m2s-2). These thresholds values 
were calculated using a subset of data and relationships derived from previous studies of other 
convection-allowing models, but it is possible that these threshold values were not calibrated correctly. 
Comments from participants reflect this uncertainty, given that very high values of UH from individual 1.5 
km WoFS members were visible using the maximum UH underlay.   
 

 

Figure 52 Participant responses to the question "If appropriate, how do the following ensembles initialized at XXXX 
UTC depict convective initiation?" 
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Figure 53 Participant responses to the question "At XXXX UTC, does the experimental 1.5-km ensemble provide 
additional useful information compared to the RT 3.0-km ensemble? 

 
 The 6-h forecast length of the 3 km ensemble allowed for comparison of 1-h, 2-h, 3-h, 4-h, 5-h, 
and 6-h forecasts on one six panel screen (Fig. 54). Participants were asked to look at this six-panel figure 
and determine whether WoFS was performing better or worse at shorter lead times. 
 

 

Figure 54 Forecasts of max UH and neighborhood probability of UH > 99th percentile from six subsequent 
initialization times of the 3 km WoFS, valid from 2300 - 0000 UTC on 4 May 2020. Storm reports of wind 
(blue squares) and hail (green circles).  Significant reports have the same shapes, but are filled black.   
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 As expected, given the WoFS system’s advanced data assimilation, the most common responses 
were that the WoFS was either “Much” or “Slightly” better at shorter lead times (Fig. 55). On only a few 
occasions were the forecasts with shorter lead times worse, which according to participant feedback 
occurred when the WoFS decreased the intensity close to the event compared to previous runs but 
severe weather was reported.  
 

 

Figure 55 Participant responses to the question "How does WoFS forecast performance change with decreasing lead-
time?" 

 
 The final WoFS evaluation involved two deterministic 1.5 km runs that used different data 
assimilation strategies. Participants were asked to rate composite reflectivity output from these runs on 
a scale of 1-10, to investigate the value of a deterministic high-resolution (1.5 km) run compared to an 
ensemble of relatively coarse-resolution runs (3 km). Generally, scores were lower for the deterministic 
runs (Figure 56) than for the 3 km ensemble (Fig. 49), with the median score for all of the deterministic 
runs except the 22z Hybrid run being one point lower than the corresponding ensemble scores. Since 
participants were reminded of the score that they had given to the corresponding 3 km ensemble while 
providing these 1-10 ratings, the ensemble appears to provide about a point of value on the 1-10 scoring 
scale relative to a single deterministic run. Overall, the Hybrid DA run scored higher than the Var DA for 
both runs examined by participants. Scores for the 22z runs of each respective model were also higher 
than the 20z runs. Mean differences were relatively small between runs, but the overall distribution of 
the Hybrid DA run had higher scores. 
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Figure 56 Subjective ratings of the composite reflectivity and UH of two deterministic WoFS forecasts using different 

data assimilation strategies, at two initialization times. 
 
c) Evaluation of experimental forecast products – Innovation Group 
 
 For the Innovation group forecasting activity, participants generated individual severe hazard 
probabilities for a 1-h time window valid 4-5pm (2100-2200 UTC), and a 4-h time window, valid 4-8pm 
(2100-0100 UTC).  An initial forecast was generated during the 2-3pm period and an updated forecast 
during the 3-4pm period.  One group of participants used WoFS guidance to generate these outlooks, 
while WoFS guidance was withheld for the other group.  For both groups, participants were able to use 
all experimental and operational guidance that was available to them through HWT and other public 
websites.  In addition to the two or three NWS forecasters that participated in this activity each week, 
two other forecasters – Dave Imy (retired SPC) and Mike Coniglio (NSSL researcher/part time SPC 
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forecaster) – participated all five weeks, as well as SFE facilitator Adam Clark (NSSL researcher).  Dave and 
Mike were always in opposite groups (i.e., when Dave used WoFS, Mike did not use WoFS and vice versa), 
while Adam always used WoFS.  Figure 57 is an example of 4-h hail outlooks produced on 5 May 2020.   
 

 

Figure 57 Experimental, initial 4-h hail outlooks (contours) issued by 3pm (2000 UTC) and valid 4-8pm (2100-0100 
UTC).  (a) and (d) are the “WoFS” and “No-WoFS” outlooks, respectively, generated by David and Michael.  
(b) and (c) are “WoFS” outlooks generated by NWS forecasters and Adam, (e) is the “No-WoFS” outlook 
generated by an NWS forecaster, and (f) is the practically perfect (Hitchens et al. 2013) outlook used as a 
verification tool.  In each panel, the thick black outline indicates the WoFS domain, green dots indicate hail  
1.0-in, black dots hail  2.0-in., and contour colors refer to specific probabilities, which are indicated by the 
legend at the bottom.   

 
 For consistency and to make the next-day evaluations manageable, ratings were only assigned to 
the “Dave and Mike” forecasts, which were referred to as “WoFS” and “No-WoFS”.  A total of 24 unique 
outlooks were evaluated each day (preliminary and updated 1- and 4-h WoFS and No-WoFS outlooks for 
each hazard).  Results for the 1-h outlooks are shown with box plots in Figure 58.  Generally, tornado 
outlooks received higher average ratings than wind and hail.  Differences between the initial and updated 
outlooks were very small.  Finally, comparisons of the WoFS and No-WoFS ratings for each hazard in both 
the initial and update outlooks revealed very small differences.  In the updates (Fig. 58; right panel), WoFS 
had slightly higher scores than No-WoFS, but a simple Welch’s t-test indicated that the differences were 
not significant ().   
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Figure 58 Box plots showing the distributions of subjective ratings for WoFS and No-WoFS forecasts of individual 
hazards.  Left panel is the initial outlook and right is the update. The thick black line within the shaded 
regions indicates the median, while the diamond is the mean.      

 
 

 

Figure 59 As in Figure 58, except for the 4-h time window outlooks.   
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For the 4-h time window outlooks (Fig. 59), the differences between mean subjective ratings of 
the WoFS and No-WoFS outlooks for both the initial and updated outlooks were larger than those of the 
1-h outlooks, but still not statistically significant.   

Part of the forecasting activity at the Innovation Desk was meant to serve as a proof-of-concept 
for a future evening activity, similar to what was done in SFE 2019 when a small group of NWS forecasters 
issued a series of WoFS-based outlooks until 8pm. However, prior to committing participants to a full day 
of forecasting with or without WoFS, we wanted to ensure that participants with WoFS had enough time 
in an hour to draw probabilistic individual hazard forecasts for two time periods (six forecasts total). We 
also wanted to ensure that the forecaster without WoFS had enough data to look at to update their 
forecasts based on operational CAMs such as the HRRR, and current observational trends. To that end, 
forecasters were asked whether or not they felt they had enough time to generate their forecasts. Most 
forecasters indicated that they had “Neither too much nor too little time” (Fig. 60), indicating that this 
activity is suitable for future SFE evening activities.  

 

 

Figure 60 Participant responses to the question “Do you feel as though you had enough, too much, or too little time 
to complete your outlooks yesterday?”, sorted by whether or not they used WoFS during their forecast 
process. 

 
The participants that used WoFS found the WoFS guidance to be moderately or very useful most 

of the time, and they indicated that they relied more on model guidance than observations when 
generating their experimental forecasts. Participants were also asked a set of questions immediately after 
they were finished issuing their products for the day (pre-verification) and the next day, after they had 
seen how their outlooks performed (post-verification). In both cases, participants found the WoFS 
guidance to be most useful for the hail, which is most likely a function of hail being a more frequent 
hazard than tornadoes and wind during SFE 2020.  Participants were also asked what products they found 
to be most useful pre- and post-verification. In both cases, hourly maximum 2-5 km above ground level 
updraft helicity (UH; hereafter) probabilities were recalled to be the most useful product (Fig. 61). 
However, after that, there were larger differences in what was most useful pre- and post-verification. 
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Probability products were generally the most popular, but hail products (including probabilities) were 
seen as more useful pre-verification. Paintball products were seen as more useful post-verification, 
perhaps because participants had a mental model of how the reflectivity and LSRs looked in reality, and 
could match it to a paintball depiction in WoFS. These preliminary results can be used to guide future 
evening activities, and further explore product usage in WoFS. 

 

 
Figure 61 Participant answers to the question “Please check which WoFS product(s) you found to be most useful 

yesterday/today”. This question was asked solely of participants taking place in the afternoon forecasting 
activity who used WoFS. 

 
d) Evaluation of experimental forecast products – R2O group 
 
 At the R2O desk during the 1:30-4pm time period, participants consisting of NWS (including SPC) 
forecasters generated hazard coverage probabilities (tornado, hail, and wind within 25 miles) for the 
remainder of the Day 1 period. Additionally, conditional intensity forecasts were generated as a separate 
layer of the outlook for the second year.  An initial set of outlooks were generated from 2-3pm without 
the use of WoFS data, and a final set of outlooks were updated from 3-4pm with all available data, 
including WoFS. The outlooks were created online using the SFE Forecast Tool.  An example of a set of 
update forecasts (i.e., using WoFS) are shown in Figure 62 below.  
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Figure 62 (a) Operational SPC Day 1 hail outlook issued 5 May 2020 at 2000 UTC.  (b)-(e) Corresponding experimental 
Day 1 hail probability updates generated by SFE participants. (f) Practically perfect hail outlook used as a 
verification tool.   

 
Each experimental outlook was rated the following day by the forecaster who generated the 

outlook.  The primary purpose of the subjective ratings was to determine if the final, updated outlook 
that included use of WoFS data was an improvement over the initial outlook (i.e., without WoFS 
data).  For most of the hazard (tornado, hail, wind) outlooks (coverage & conditional intensity), the final 
outlook (issued just an hour after the initial outlook) was a slight improvement (Fig. 63).  The largest 
subjective improvements generally occurred with the hail outlooks.  Overall, the forecaster comments 
regarding the role of WoFS in the outlook updates was to increase confidence in various aspects of the 
forecast: CI, location, coverage, and intensity. 

The forecasters generally quickly grasped the concept of conditional intensity outlooks, though 
most of them were being introduced to the concept for the first time during the 2020 SFE.  The forecasters 
most commonly cited the conditional intensity outlooks as being “neither difficult nor easy” to generate 
(Fig. 64).  This general sentiment along with the conditional intensity outlooks often receiving higher 
ratings than the coverage outlooks (Fig. 63) is a promising sign of forecasters being able to successfully 
grasp the concept and execute the conditional intensity forecasts.  Overall, the wind outlooks were 
deemed the most difficult to generate (Fig. 65), which is confirmed by the wind outlooks also having the 
lowest subjective ratings of the hazards (Fig. 63). 
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Figure 63 Distribution of subjective ratings of experimental initial/final coverage and conditional intensity outlooks 

issued by SFE participants for tornado (red), hail (green), and wind (blue). 
 

 
Figure 64 Subjective daily rating counts by 2020 SFE participants regarding the difficulty of drawing conditional 

intensity outlooks: “Very easy”, “Easy”, “Neither difficult nor easy”, “Difficult”, or “Very difficult”. 
 

 
 
Figure 65 Subjective daily rating counts by 2020 SFE participants regarding which hazard was most difficult in 

drawing the outlooks. 
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4. Summary 
 
 The 2020 Spring Forecasting Experiment (2020 SFE) was conducted virtually from 27 April – 29 
May by the SPC and NSSL with participation from forecasters, researchers, model developers, university 
faculty, and graduate students from around the world.  The primary theme of the 2020 SFE was to 
evaluate convection-allowing model and ensemble guidance for identifying optimal configurations of 
convection-allowing versions of FV3 and CAM ensembles, including several carefully designed and 
controlled experiments as part of the Community Leveraged Unified Ensemble (CLUE).  Furthermore, 
NSSL’s prototype Warn-on-Forecast System was utilized in creating experimental high-temporal 
resolution probabilistic forecasts of severe weather hazards. 
 
Several preliminary findings/accomplishments from the 2020 SFE are listed below:   
 

• Used a prototype Warn-on-Forecast System (WoFS) to generate short-term individual hazard 
guidance, and for updating full-period hazard forecasts valid 2100-1200 UTC and corresponding 
conditional intensity guidance.  Corresponding outlooks were also generated without using WoFS. 

o In the Innovation Group, differences between subjective ratings of WoFS and No-WoFS 
outlooks were most apparent for the 4-h time windows, with mean ratings slightly higher 
for WoFS.  Participants generally found that they had enough time to issue 1- and 4-h 
individual hazards outlooks, motivating expansion of this activity in future experiments. 

o In the R2O group, updated Day 1 outlooks that used WoFS were given slightly higher 
subjective ratings than initial outlooks issued without WoFS.  The majority of participants 
(75%) stated that generating the conditional intensity forecasts was “neither difficulty nor 
easy”, “easy”, or “very easy”, and wind was the hazard most often cited as being the most 
difficult to generate conditional intensity forecasts.  

• Examined and assessed various methods to produce first guess hazard guidance based on forecast 
output from HREFv2.1. 

o For tornadoes, methods combining UH with forecast STP and associated tornado 
climatologies (“STP Cal”) performed best for 24-h periods, while the Loken et al. (2020) 
machine-learning-based forecast performed worst.  For the 4-h time window tornado 
outlooks, the SPC Timing Guidance performed best.   

o For 24-h hail outlooks, the Loken et al. (2020) machine-learning-based guidance was 
notable for its exceptional performance, exceeding the next closest method by a full point 
in its mean ratings.  For 4-h hail outlooks, the SPC Timing Guidance had the highest mean 
ratings followed closely by the Burke et al. (2020) machine-learning-based guidance.   

o For 24-h wind outlooks, mean ratings for the Loken et al. (2020) method was slightly 
better than HREF/SREF calibrated forecasts, and the SPC Timing Guidance performed best 
for the 4-h wind outlooks.   

• Examined various deterministic and ensemble CAM systems within the CLUE using HREFv2.1 and 
HREFv3 as a baseline. 
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o Time-lagged ensembles based at 0000 UTC neither improved nor degraded their non-
time-lagged counterparts, which motivates further investigation to determine the 
optimal number of members to run at a single time.  HREF continues to stand as a 
formidable baseline for CAM ensembles, with HREFv3 receiving the highest overall ratings 
of all CAM ensembles.   

o Ensemble sub-setting using ensemble sensitivity analysis applied to 1800 and 0000 UTC 
initialized HRRRE members found that subset skill remained about the same as that of the 
full ensemble, and that severe weather probabilities were degraded by the subset more 
often than they were improved.  These suboptimal results may be related to 
inconsistencies between the Texas Tech ensemble, which was used for calculating 
ensemble sensitivity, and the HRRRE, which was used for the sub-setting.   

o Using MODE to objectively measure skill of three hail forecasting methods applied to 
HRRRE found that machine-learning had the highest CSI (but a high size bias), followed in 
order by HAILCAST and the Thompson method.  In surveys that queried participants on 
hail forecast verification methods, participants found location, size, and timing all 
important aspects of “good” hail forecasts, in that order.   

o EMC FV3-SARX, which includes an updated physics package, was found to be an 
improvement relative to EMC FV3-SAR.  NSSL FV3-SAR, which is configured with more 
vertical levels, had a slight improvement at earlier forecast hours relative to EMC FV3-
SARX.    

o Comparing pairs of FV3-SAR runs with different land-surface models found that NOAH 
LSM performed best.  For pairs with different initial conditions, there was a large impact 
on forecasts, but no set of initial conditions performed best.  The HORD=5 option (less 
diffusivity) received slightly higher ratings than HORD=6.   

o In comparisons of several single- and multi-model time-lagged ensembles based at 0000 
UTC, subjective ratings were very similar, demonstrating that for these configurations, 
multiple models did not provide an advantage.  The baseline HREF configurations were 
superior to all of the various single- and multi-model ensemble configurations, even those 
that included all possible combinations of 36 members.   

o In comparisons between two different time-lagging strategies for ensembles based at 
1200 UTC, it was found that an ensemble configured with two sets of physics and 
members initialized from different HRRR initial conditions was notably superior to the 
HRRRE and a time-lagged HRRRE.  Thus, this could be a potentially useful strategy for 
configuring a single-model CAM ensemble.   

o Evaluations of deterministic CAMs provided by each SFE collaborator (EMC, NSSL, GFDL, 
UK Met, and GSL), found that GSL’s HRRRv4 displayed superior performance for both 
convective evolution and environment fields.   

o In assessments involving a matrix of CAMs with different model cores and driving models, 
although there was significant day-to-day variability, it was generally found that forecasts 
of reflectivity and UH were more sensitive to the model core, while environmental fields 
were more sensitive to the driving model.   WRF-ARW was most often cited as the best 
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performing model core, while the better performing driving model was dependent on 
which model core the driving model was coupled with.   

• Machine-learning-based algorithms were used to diagnose the likelihood that severe wind reports 
were actually associated with winds  50 knots.  In the subjective assessments of three different 
approaches, the ensemble average of the three methods was rated highest and the “Stack RF” 
approach was rated second highest.  While Brier Scores also indicated that the ensemble average 
performed best, the second best Brier Score was associated with a gradient boosted model 
(GBM).  

• A neural network and random forest algorithm were trained on deterministic 3-km WRF forecasts 
from 2010-15 to produce hazard guidance for tornadoes, wind, and hail, with UH-based 
probabilities used as a baseline comparison.  In general, the neural network forecasts were rated 
most favorably, but objective verification results revealed that the neural networks suffered from 
over-prediction, with the random forest forecasts having better reliability.  Both sets of guidance 
were rated more highly than the UH baseline.   

• Two versions of 3D-RTMA were subjectively evaluated to assess quality and utility for situational 
awareness and short-term severe weather forecasting.  Both systems performed well with only 
slight differences in and around areas of convection or areas with limited surface observations.   

• WRF simulations were examined that assimilated radar data with and without assimilation of total 
lightning data.  Subjective evaluations revealed that most of the time there was little to no impact 
on forecast skill from the lightning DA, but when there was an impact, there were improvements 
more often than when there were degradations.  Objective verification showed that the lightning 
DA increased precipitation biases, but also resulted in higher CSI relative to the runs without 
lightning DA.   

• Subjective comparisons between the 3-km real-time WoFS and a 1.5-km enhanced resolution 
WoFS revealed very small differences in subjective ratings.  Also, a 1.5-km deterministic WoFS run 
using a hybrid DA system performed better than a similarly configured WoFS run that used 3DVAR.   

 
 Overall, the 2020 SFE was successful in testing new forecast products and modeling systems to 
address relevant issues related to the prediction of hazardous convective weather.  The findings and 
questions generated during the 2020 SFE directly promote continued progress to improve forecasting of 
severe weather in support of the NWS Weather-Ready Nation initiative.  In subsequent years, we plan to 
continue exploring the potential forecasting applications of Warn-on-Forecast, continue examining 
strategies for CAM ensemble design, accelerate work with our partners to optimize FV3-SAR for CAM 
forecasting applications, and explore new ways to leverage AI-based strategies for calibrating and post-
processing CAM output to aid forecasters.  Additionally, we expect that this work will take on particular 
importance and aid with evidence-based decision making as NOAA moves forward with its plans for a 
Unified Forecasting System.   
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APPENDIX  
 
Table A1 Weekly participants during the 2020 SFE.  Facilitators/leaders for the 2020 SFE included Adam Clark (NSSL), Israel 

Jirak (SPC), David Imy (retired SPC), Mike Coniglio (NSSL/SPC), Burkely Gallo (CIMMS/SPC), Kenzie Krocak 
(CIMMS/NSSL/OU), Brett Roberts (CIMMS/SPC/NSSL), Kent Knopfmeier (CIMMS/NSSL), and Andy Dean (SPC). 

 

Week 1 
April 27-May 1 

Week 2 
May 4-8 

Week 3 
May 11-15 

Week 4 
May 18-22 

Week 5 
May 26-29 

Lizzie Tirone (ISU) Lizzie Tirone (ISU) Lizzie Tirone (ISU) Lizzie Tirone (ISU) Lizzie Tirone (ISU) 

Jeremiah Pyle (AWC) Brice Coffer (NCState) Bill Gallus (ISU) 
Lance Bosart (Suny-
Albany) 

Kallan Parker (PSU; 
Hollings) 

Victor Gensini (NIU) Lucia Scaff (U. Sask) Kyle Hugeback (ISU) 
Bruno Ribeiro (Suny-
Albany) Clark Evans (UWM) 

Ryan Sobash (NCAR) Corey Potvin (NSSL) 
Michou Baart de la 
Faille (KNMI) 

Scott Feldman (Suny-
Albany) Dillon Blount (UWM) 

Yongming Wong 
(OU/MAP) Becky Adams-Selin (AER) Tina Kalb (DTC) Steve Weiss (SPC Ret.) Craig Schwartz (NCAR) 

Amanda Burke (OU) Alicia Bentley (EMC) John Allen (CMU) Harald Richter (BoM) Ben Blake (EMC) 

Jacob Carley (EMC) Aaron Johnson (MAP) Glen Romine (NCAR) 
Tom Galarneau 
(CIMMS/NSSL) Xiaoyan Zhang (EMC) 

Brett Borchardt (WFO 
LOT) 

Andrew McKaughan (WFO 
PIH) Paige Crafter (USAF) Tony Oakley (USAF) Austin Coleman (TTU) 

Matt Anderson (WFO 
MRX) Alex Lukinbeal (WFO MSO) Logan Dawson (EMC) Gang Zhou (EMC) Jidong Gao (NSSL) 

Alex Krull (WFO DMX) Hayden Frank (WFO BOX) Austin Dixon (OU) Matt Pyle (EMC) Jamie Wolff (DTC) 

David Harrison 
(CIMMS/SPC) 

Patrick Skinner 
(CIMMS/NSSL) Austin Coleman (TTU) Austin Coleman (TTU) Corey Mead (WFO OAX) 

Derek Stratman 
(CIMMS/NSSL) Yibing Su (Princeton) Mike Seaman (WFO SLC) Jason Godwin (WFO FWD) Nick Vertz (WFO BYZ) 

Joe Pollina (WFO OKX) Jeff Beck (GSL) Eric Bunker (WFO TAE) Tom Hultquist (WFO MPX) Curtis Alexander (GSL) 

Jeff Duda (GSL) Terra Ladwig (GSL) 
Robert Megnia (WFO 
LCH) Dan McKemy (WFO LMK) John Brown (GSL) 

Dave Turner (GSL) Nigel Roberts (UK Met) 
Steve Zubrick (WFO 
LWX) Mike Evans (WFO ALY)  

Aurore Porson (UK Met)  Geoff Manikin (EMC) David Dowell (GSL)  

  John Brown (GSL) Eric James (GSL)  

  Ed Szoke (GSL) Mike Bush (UK Met)  

  Aurore Porson (UK Met) Dave Ahijevych (NCAR)  

  Nigel Roberts (UK Met)   

  
Bethany Earnest 
(CIMMS/SPC)   
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Table A2 Model evaluations schedule. 
Model Evaluations: Monday 

Time (CDT) Topic Moderator 

10:00 a.m. Welcome and Introductions Israel 

10:20 a.m. Overview of SFE Model Contributions and 
Scientific Goals 

Israel and PIs 

11:00 a.m. Preview of the Evaluations (Science Questions, 
Examples) 

Group A: Israel & David J. 
Group B: Burkely & Adam 

Model Evaluations: Tuesday-Friday 

9:45 a.m. Overview of Yesterday’s Severe Weather (David Imy) 
Break into Virtual Groups (A & B) 

 
Group A (Israel & David J.) Group B (Burkely & Adam) 

10:00 a.m. Independent Evaluations (with moderators 
available for questions) 

Independent Evaluations (with moderators available for 
questions) 

11:00 a.m. Discussion of Evaluations: 
A1. ISU ML Severe Wind Probs 
A2. NCAR ML Hazard Guidance 
A3. CLUE: 00Z CAM TL-Ensemble 
A4. CLUE: TTU Ensemble Subsetting 
A5. CLUE: Ens. Hail Guidance (Fri) 
A6. CLUE: FV3-SAR Physics/DA/VL 
A7. CLUE: FV3-SAR IC/Hord/LSM 
A8. Mesoscale Analyses 
A9. CLUE: Lightning DA  

Discussion of Evaluations: 
B1(a-f). HREF Calibrated Guidance 
B2. CLUE: 00Z CAM Multi-Model Ens. 
B3. CLUE: 12Z CAM TL-Ensemble 
B4. CLUE: Deterministic Flagships 
B5. CLUE: Core and ICs 
B6(a-f). WoFS Configurations 

 
Table A3 Short-term forecasting schedule. 

Short-Term Forecasting: Monday-Friday 

1:30 p.m. Overview of Today’s Severe Weather Threat (David Imy) 
Break into Virtual Groups (R2O & Innovation) 

 
R2O (Israel & Mike) Innovation (David Imy & Adam) 

1:40 p.m. Overview of SFE Drawing Tool (M); Evaluation of 
Yesterday’s Forecasts (T-F) 

Overview of WoFS Drawing Tool (M); Evaluation of 
Yesterday’s Forecasts (T-F) 

2:00 p.m. Day 1 Outlook Generation* 
Full period (20-12Z) coverage and conditional 
intensity forecasts of tornado, hail, and wind using 
available 12Z CAM ensemble guidance (not WoFS) 
and observations.  

Short-Term Outlook Generation*^ 
1-h (21-22Z) and 4-h (21-01Z) probabilistic forecasts of 
tornado, hail, and wind.  Some forecasters with access to 
WoFS^ and some without*. 

3:00 p.m. Day 1 Outlook Update* 
Update full period (21-12Z) coverage and 
conditional intensity forecasts of tornado, hail, and 
wind using WoFS and observations.  

Short-Term Outlook Update*^ 
1-h (21-22Z) and 4-h (21-01Z) probabilistic forecasts of 
tornado, hail, and wind.  Same forecasters with access to 
WoFS^ and same without*. 

* Using SFE Drawing Tool 
^ Using WoFS Drawing Tool 
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Table A4 Description of “non-hatched” (normal), “hatched”, and “double-hatch” conditional intensity forecasts for wind, 
hail, and tornadoes. 

 

 


