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1. Introduction 
 
 The 2018 Spring Forecasting Experiment (SFE2018) was conducted from 30 April – 1 June by the 
Experimental Forecast Program (EFP) of the NOAA/Hazardous Weather Testbed (HWT), and was co-led 
by the NWS/Storm Prediction Center (SPC) and OAR/National Severe Storms Laboratory (NSSL).  
Additionally, important contributions of convection-allowing models (CAMs) were made from 
collaborators including the Center for Analysis and Prediction of Storms (CAPS) at the University of 
Oklahoma, Multi-scale data Assimilation and Predictability (MAP) Laboratory at the University of 
Oklahoma, NOAA Earth Systems Research Laboratory/Global Systems Division (ESRL/GSD), NOAA 
Geophysical Fluid Dynamics Laboratory (GFDL), United Kingdom Meteorological Office (Met Office), 
National Center for Atmospheric Research (NCAR), and NOAA/NCEP’s Environmental Modeling Center 
(EMC).  Participants included more than 80 forecasters, researchers, model developers, university faculty 
and graduate students from around the world (see Table 1 in Appendix). As in previous years, SFE2018 
aimed to test emerging concepts and technologies designed to improve the prediction of hazardous 
convective weather, consistent with the Forecasting a Continuum of Environmental Threats (FACETs; 
Rothfusz et al. 2014) and Warn-on Forecast (WoF; Stensrud et al. 2009) visions: 
 

Operational Product and Service Improvements: 
• Explore the ability to generate higher temporal resolution Day 1 severe weather outlooks than 

those issued operationally by SPC. 
o 4-h periods for individual severe hazards (tornado, hail, and wind) 
o 1-h periods for near-term total severe 

• Explore methods to include more detailed timing information by issuing potential severe timing 
(PST) areas, which are enclosed areas valid for 4-h periods that highlight the time window when 
the majority of severe weather reports are expected to occur. 

• Test the feasibility of generating short lead-time, 1-h time window convective outlooks using a 
prototype WoF system. 

• Test the utility of a prototype WoF system as guidance for 4-h time window severe hazard 
outlooks. 
 

Applied Science Activities: 
• Compare various CAM ensemble prediction systems to identify strengths and weaknesses of 

different configuration strategies.  Most of these comparisons were conducted within the 
framework of the Community Leveraged Unified Ensemble (CLUE) discussed below.  Additional 
comparisons were made using the operational High Resolution Ensemble Forecast System 
Version 2 (HREFv2) as a baseline.   

• Compare and assess different approaches in CAMs for predicting hail size. 
• Compare and assess the current version of HREFv2 with possible future configurations that 

include extended-length HRRRv3 forecasts, as well as elimination of time-lagged members.  
• Evaluate 3-km grid-spacing, convective-scale global-nested versions of the Finite Volume Cubed 

Sphere model (FV3) that have different microphysics and boundary layer parameterizations.    
• Evaluate a prototype WoF system – the NSSL Experimental Warn-on-Forecast System for 

ensembles (NEWS-e) – for applications to short-term severe weather outlook generation.   
• Evaluate whether ensemble sensitivity-based subset probabilities provide improved guidance 

relative to the full ensemble from which the ensemble sensitivity was computed.   



 3 

• Compare forecasts from a global and high-resolution configuration of the UK Met Office’s 
Unified Model to diagnose errors in the high-resolution UM inherited from its parent global 
model.   

• Evaluate the utility of an objective-based approach for efficiently visualizing and deriving 
probabilities from a CAM ensemble.   
 
As in previous experiments, a suite of state-of-the-art experimental CAM guidance contributed by 

our large group of collaborators was central to SFE2018.  Additionally, for the third consecutive year, these 
contributions were formally coordinated into a single ensemble framework called the Community 
Leveraged Unified Ensemble (CLUE).  The 2018 CLUE was constructed by having all groups agree on a set 
of model specifications (e.g., grid-spacing, vertical levels, domain size, etc.) so that the simulations 
contributed by each group could be used in controlled experiments. This design allowed us to conduct 
several experiments to aid in identifying optimal configuration strategies for CAM-based ensembles.  The 
2018 CLUE included 82 members using 3-km grid-spacing that allowed a set of five unique experiments. 
SFE2018 activities also involved testing of a Warn-on-Forecast prototype system, the NEWS-e. 

This document summarizes the activities, core interests, and preliminary findings of SFE2018.  More 
detailed information on the organizational structure and mission of the HWT, model and ensemble 
configurations, and information on various forecast tools and diagnostics can be found in the operations 
plan (https://hwt.nssl.noaa.gov/sfe/2018/docs/HWT_SFE2018_operations_plan.pdf). The remainder of 
this document is organized as follows: Section 2 provides an overview of the models and ensembles 
examined during SFE2018 along with a description of the daily activities, Section 3 reviews the preliminary 
findings of SFE2018, and Section 4 contains a summary of these findings. 

 
2.  Description 
 
a) Experimental Models and Ensembles 
 
 Building upon successful experiments of previous years, SFE2018 focused on the generation of 
experimental probabilistic forecasts of severe weather valid over shorter time periods than current 
operational SPC severe weather outlooks.  This is an important step toward addressing a strategy within 
the National Weather Service (NWS) of providing nearly continuous probabilistic hazard forecasts on 
increasingly fine spatial and temporal scales (i.e., FACETs), in support of the NWS Weather-Ready Nation 
initiative.  As in previous experiments, a suite of new and improved experimental CAM guidance including 
ensembles was central to the generation of these forecasts. For all of the models, hourly maximum fields 
(HMFs) of explicit storm attributes such as simulated reflectivity, updraft helicity, updraft speed, and 10-
m wind speed, were examined as part of the experimental forecast and evaluation process.  Ninety-five 
unique CAMs were run for SFE2018, of which 82 were a part of the CLUE system.  Other deterministic and 
ensemble CAMs outside of the CLUE were contributed by NSSL, EMC, GSD and the UK Met Office.  To put 
the volume of CAMs run for SFE2018 into context, Figure 1 shows the number of CAMs run for SFEs since 
2007.  There is a clear increasing trend, but consolidation of members contributed by various agencies 
into the CLUE during the past three years has made the increase in members more manageable and has 
allowed for more controlled scientific comparisons.   
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Figure 1 Number of CAMs run for SFEs since 2007.  The different colored stacked bars indicate the 

contributing agencies. 
 
More information on all of the modeling systems run for SFE2018 is given below.   
 
 1) THE COMMUNITY LEVERAGED UNIFIED ENSEMBLE (CLUE) 
 
 The 2018 CLUE is a carefully designed ensemble with subsets of members contributed by NOAA 
groups at NSSL, GFDL, and ESRL/GSD, and non-NOAA groups at CAPS (OU), MAP (OU), and NCAR.  In 
addition, the Developmental Testbed Center (DTC) provided support for post-processing, and 
configurations for CAPS runs that used stochastic physics.  To ensure consistent post-processing, 
visualization, and verification, all CLUE contributors used the same post-processing software to output 
the same set of model output fields on the same grid.  An exception was some of the FV3 runs, which 
required different software for post-processing, but the fields were output to the CLUE grid.  The post-
processed model output fields are the same as the 2D fields output by the operational HRRR and were 
chosen because of their relevance to a broad range of forecasting needs, including aviation, severe 
weather, and precipitation.  A small set of additional output fields requested by NCEP’s Weather 
Prediction Center (WPC), SPC, and Aviation Weather Center (AWC) were also included.  The FV3 runs did 
not contain the full set of fields as all the other CLUE runs since development of FV3 diagnostics and post-
processing remains in progress.  All CLUE members were initialized weekdays at 0000 UTC with 3-km grid-
spacing covering a CONUS domain.  A full description of all members and list of post-processed model 
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fields are provided in the SFE2018 operations plan (Gallo et al. 2018).  Table 1 provides a summary of each 
CLUE subset.   
 
Table 1 Summary of CLUE subsets.  IC/LBC perturbations labeled “SREF” indicate that IC perturbations were extracted 

from members of NCEP’s Short-Range Ensemble Forecast system and added to 0000 UTC NAM analyses.  In 
subsets with “yes” indicated for mixed-physics, the microphysics and turbulence parameterizations were 
varied.  Note, a member in the mixed-phys ensemble was also used as a member in the single-phys 
ensemble. Thus, although the total number of members adds to 83, there were 82 unique members.   

Clue 
Subset 

# of 
mems 

IC/LBC 
perturbations 

Mixed 
Physics 

Data Assimilation Model 
Core 

Agency 

mixed-phys 11  SREF yes ARPS-3DVAR ARW CAPS (OU) 
te14 1 none no ARPS-3DVAR ARW CAPS (OU) 
single-phys 8 SREF no ARPS-3DVAR ARW CAPS (OU) 
stoch-phys 8 SREF no ARPS-3DVAR ARW CAPS (OU) 
caps-enkf 12 EnKF (CAPS) yes EnKF (CAPS) ARW CAPS (OU) 
fv3-phys 11 none yes cold start (GFS) FV3 CAPS (OU) 
HRRR36 1 no no RAP-GSI/DFI ARW ESRL/GSD 
ncar 10 EAKF (DART) no EAKF (DART) ARW NCAR 
map-hybrid 10 EnKF-Var hybrid (GSI) no EnKF-Var hybrid (GSI) ARW MAP (OU) 
hrrre 9 EnKF no EnKF ARW ESRL/GSD 
nssl-fv3 1 no no cold start (GFS) FV3 NSSL 
gfdl-fv3 1 no no cold start (GFS) FV3 GFDL  

 
The design of CLUE allowed for 5 unique experiments that examined issues immediately relevant to the 
design of a NCEP/EMC operational CAM-based ensemble.  These experiments are listed in Table 2.   
 
Table 2 List of CLUE experiments for SFE2018.   

Experiment 
Name 

Description CLUE 
subsets 

Physics 
perturbation 
experiment 

Three ensembles with perturbed ICs/LBCs were compared to test 
the effectiveness of different strategies for representing model 
error.  One ensemble had single physics, one had mixed-physics, and 
one had single physics with stochastic perturbations.   

mixed-phys, 
single-phys, & 
stoch-phys 

Data assimilation 
comparisons 

3DVAR and several different EnKF data assimilation approaches 
were compared.  Note, this experiment was not as controlled as the 
others because there were other different aspects of the 
configurations in the subsets with different data assimilation.   

map-hybrid, 
caps-enkf, 
ncar, & hrrre 

Microphysics 
Sensitivities 

The te14 member used a stochastically perturbed microphysics 
scheme, which was compared to a control member in the mixed-
phys ensemble to evaluate sensitivities. 

te14 

FV3 Three versions of FV3 were examined and compared to current 
models, like HRRRv3, to gauge performance at convective scales. 

fv3-phys01, 
nssl-fv3, gfdl-
fv3, & HRRR36 

FV3 physics Convective-scale versions of FV3 were run with different 
microphysics and boundary layer parameterizations to examine 
sensitivities.   

fv3-phys 
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2) HIGH RESOLUTION ENSEMBLE FORECAST SYSTEM VERSION 2 (HREFv2) 
 
The HREFv2 is an 8-member, convection-allowing ensemble that is run operationally at EMC.  The 

version used for the HWT was slightly different than the configuration implemented operationally by EMC 
on 1 November 2017, however, the performance of both are very similar.  HREFv2 members use different 
physics, model cores (ARW and NMMB), initial and lateral boundary conditions (NAM and RAP), and half 
of the members are 12-h time lagged.  All members, except for the NAM CONUS Nest, are initialized with 
a “cold-start”.  Forecasts to 36 h are produced at 0000 and 1200 UTC.  The diversity in HREFv2 has proven 
to be a very effective configuration strategy, and it has consistently outperformed all other CAM 
ensembles examined in the HWT during the last few years (formerly called the SSEO).  Thus, HREFv2 
performance is considered the baseline against which potential future operational CAM ensemble 
configurations are compared.   

 
 3) MET OFFICE CONVECTION-ALLOWING MODEL RUNS 
 

The operational configuration of the 2.2 km grid-spacing, nested high-resolution version of the 
UK Met Office’s Unified Model [internally designated “Parallel Suite 41 (PS41)”] with forecasts to 120 h 
was initialized daily at 0000 and 1200 UTC and supplied to SFE2018.  The UM forecasts had 70 vertical 
levels across a slightly sub-CONUS domain with initial and lateral boundary conditions from the 0000 and 
1200 UTC initializations of the 10-km grid-spacing global configuration of the UM.  This model 
configuration included a 3D turbulent mixing scheme using a locally scale-dependent blending of 
Smagorinsky and boundary layer mixing schemes with no convective parameterization. Stochastic 
perturbations were made to the low-level resolved-scale temperature field in conditionally unstable 
regimes (to encourage the transition from subgrid to resolved scale flows) and the microphysics was 
single moment.  Partial cloudiness was diagnosed assuming a triangular moisture distribution with a 
width that is a universally specified function of height only.   

In addition to the 2.2 km UM, data from the Met Office global model was provided to allow for 
comparison against the 2.2 km to gain more insight into the source of the errors in the convective scale 
model.  The global data were provided from the OS40 version of the Met Office global UN, currently 
running at a horizontal grid-spacing of approximately 10 km in the mid-latitudes and using 70 vertical 
levels up to 80 km.  It makes use of 4D-VAR hybrid data assimilation with the main scientific difference 
against the 2.2 km as follows: use of a mass flux convection scheme (based on Graham Rowntree), a 
Prognostic Cloud Scheme (PC2), a purely 1D non-local boundary layer scheme and schemes for 
parameterizing the effects of gravity wave drag and sub-grid orographic drag.   

 
4) ESRL/GSD HIGH RESOLUTION RAPID REFRESH (HRRR) MODEL 
 
The 3-km grid-spacing HRRRv3 model developed by the ESRL/GSD, which became operational in 

July 2018, continued to be examined in SFE2018.  The convection-allowing HRRR uses GSI hybrid data 
assimilation (instead of 3DVAR) with the latest 3-D radar reflectivity.  The background ensemble for this 
assimilation is the 80-member GDAS (GFS) ensemble. The HRRRv3 runs every hour on a 3-km grid with 
output to 18 h, except at 0000, 0600, 1200, and 1800 UTC when it runs out to 36 hours.  The HRRRv3 is 
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initialized with an hour of 3-D radar reflectivity using a latent-heating specification technique including 
some refinements in this latent-heating from the parent RAPv4 model. The HRRRv3 uses grid-point 
statistical interpolation (GSI) hybrid GFS ensemble-variational data assimilation of conventional 
observations. Building upon the advancements in the operational HRRRv2 at NCEP, HRRRv3 includes 
assimilation of TAMDAR aircraft observations; refines assimilation of surface observations for improved 
lower-tropospheric temperature, dewpoint (humidity), winds, and cloud base heights; and places more 
weight on the ensemble contribution to the data assimilation.  HRRRv3 also adds assimilation of lightning 
flash rates as a complement to radar reflectivity observations through a similar conversion to specified 
latent heating rates during a one-hour spin-up period in the model. Numerous model changes within the 
HRRRv3 include an update to WRF-ARW version 3.9, utilization of updated Thompson microphysics, 
transition to a hybrid sigma-pressure vertical coordinate for improved tropospheric temperature, and 
dewpoint and wind forecasts along with a higher resolution (15 second) land use dataset. Physics 
enhancements have also been made to the MYNN PBL scheme and RUC land surface model along with 
additional refinements to shallow cumulus/sub-grid-scale cloud parameterizations including enhanced 
interactions with the radiation and microphysics schemes for greater retention of cloud features. 

 
  5) HIGH RESOLUTION RAPID REFRESH ENSEMBLE (HRRRE) 
 
 In addition to the 0000 UTC initialized HRRRE runs that were a part of the 2018 CLUE, HRRRE 
forecasts were also provided at 1200 UTC.  These forecasts were run across approximately the eastern 
55% of the CONUS out to 24h across the same domain.  This 1200 UTC ensemble was initialized from 3-
km analyses in their data assimilation process rather than 15-km analyses, but are otherwise configured 
similarly to the 0000 UTC initialized HRRRE runs.  
  
 6) NSSL EXPERIMENTAL WARN-ON-FORECAST SYSTEM FOR ENSEMBLES (NEWS-E) 
 

The NSSL Experimental Warn-on-Forecast System for ensembles (NEWS-e) is a 36-member WRF-
based ensemble data assimilation system used to produce very short-range (0-6 h) probabilistic 18-
member forecasts of supercell thunderstorm rotation, hail, high winds, and flash flooding. The starting 
point for each day’s experiment was the experimental HRRRE provided by ESRL/GSD.  A 6-h ensemble 
forecast launched from the 1200 UTC HRRRE analysis was used to provide initial conditions for the NEWS-
e at 1800 UTC.  

The daily NEWS-e domain location targeted the primary region where severe weather was 
anticipated and covered a 750-km wide region with very frequent 15-min DA cycles and forecasts every 
30 minutes.  All ensemble members utilized the NSSL 2-moment microphysics parameterization and the 
RAP land-surface model, but the PBL and radiation physics options were varied amongst the ensemble 
members to address uncertainties in model physics.  MRMS radar reflectivity and Level II radial velocity 
data, cloud water path retrievals from the GOES-16 imager, and Oklahoma Mesonet observations (when 
available) were assimilated every 15 min using an EnKF approach, beginning at 1800 UTC each day. ASOS 
data was also assimilated at 15 minutes past each hour. A 6-h (5-h) ensemble forecast was initialized from 
the 1900 (2000) UTC NEWS-e analysis for HWT product evaluation from 2000 – 2100 UTC. Beginning at 
2030 UTC, a 180-min ensemble forecast with 5-min output was launched every 30 minutes through 0300 
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UTC the next day. These forecasts were viewable using the web-based NEWS-e Forecast Viewer 
(https://www.nssl.noaa.gov/projects/wof/news-e/realtime/).  

 
b) Daily Activities 
 
 SFE2018 activities were focused on forecasting severe convective weather at two separate desks, 
one forecasting individual hazards (Severe Hazards Desk) and the other forecasting total severe 
(Innovation Desk), with different experimental forecast products being generated at different temporal 
resolutions.  Forecast and model evaluations also were an integral part of daily activities.  A summary of 
forecast products and evaluation activities can be found below while a detailed schedule of daily activities 
is contained in the appendix (Table A1). 
 
 1) EXPERIMENTAL FORECAST PRODUCTS 
 

Similar to previous years, the experimental forecasts explored the ability to add temporal 
specificity to longer-term SPC severe weather outlooks.  All the forecast activities for SFE2018 focused on 
periods within the Day 1 time-frame.  The participants were split into two desks, with those at the 
Innovation Desk forecasting the total severe threat (combining hail, wind, and tornado hazards), and 
those at the Severe Hazards Desk forecasting individual severe hazards.  At the Severe Hazards Desk, the 
first forecast mimicked the SPC operational Day 1 Convective Outlook, which consisted of individual 
probabilistic forecasts of large hail, damaging wind, and tornadoes within 25 miles (40 km) of a point valid 
1600 to 1200 UTC the next day.  The first forecast at the Innovation Desk also covered the 1600 to 1200 
UTC period, but consisted of probabilities for total severe (combined tornado, hail, and wind).  These 
experimental forecasts covered a limited-area domain where the primary severe weather threat for the 
day was expected to occur and/or where interesting forecast challenges were expected.   

Each desk then manually stratified the Day 1 outlooks into periods with higher temporal 
resolution.  The Severe Hazards Desk generated separate probability forecasts of large hail, damaging 
wind, and/or tornadoes for two 4 h periods: 1700-2100 and 2100-0100 UTC.  As an alternative way of 
stratifying the Day 1 outlook, the Innovation Desk created a product aimed toward the emergency 
management community, designating areas and 4-h periods where severe convective hazards occurrence 
was expected throughout the day.  These potential severe timing (PST) areas were designated within the 
areas of 15% probability in the Day 1 full-period outlook generated by the Innovation Desk.  This approach 
built upon the isochrones approach during SFE2016 and SFE2017, with the timing and areal information 
both available on the final figure. Despite the different end products, the goals of the activities were the 
same as in prior years – namely to explore different ways of introducing probabilistic severe weather 
forecasts on time/space scales that are not currently addressed with categorical forecast products (e.g., 
SPC Mesoscale Discussions and Severe Thunderstorm/Tornado Watches), and to begin to explore ways 
of seamlessly bridging probabilistic severe weather outlooks and probabilistic severe weather warnings 
as part of the NOAA WoF and FACETS initiatives.   

During previous experiments, calibrated probabilistic severe guidance from the SREF/SSEO (Jirak 
et al. 2014) was used to temporally disaggregate a 1600–1200 UTC period human forecast. A scaling 
factor was formulated by matching the full-period calibrated severe SREF/SSEO guidance to the human 
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forecast, and then this scaling factor (unique at every grid point) was applied to the calibrated severe 
guidance for each individual period.  Finally, consistency checks were conducted to arrive at the final 
temporally disaggregated forecasts (Jirak et al. 2012). These automated forecasts from SFE2012 to 
SFE2017 fared favorably both in terms of objective metrics (e.g., CSI, FSS) and subjective impressions 
when compared to manually drawn forecasts.  Similarly, for SFE2018, the 1600–1200 UTC human 
forecasts for the individual hazards were temporally disaggregated into the 4-h periods (1700–2100 UTC 
and 2100–0100 UTC) using HREF/SREF calibrated hazard guidance to provide a first guess for the two 
forecast periods. 

The first set of short-time-window forecasts and timing forecasts were issued in the morning by 
both desks.  At both the Severe Hazards Desk and the Innovation Desk, the lead forecaster generated the 
short-time-window forecasts on the N-AWIPS machines. However, the participants were split into five 
groups for each desk and used a web interface to generate their own short-time window probability 
forecasts using new Google Chromebooks. The redesigned web interface is similar to the Probabilistic 
Hazard Information (PHI) tool used in past experiments, but has been specifically designed to incorporate 
data from CLUE subsets and other experimental CAM ensemble guidance. Each Chromebook was 
associated with a specific ensemble or CLUE subset; participants were asked to base their forecast on 
that ensemble or CLUE subset.  Additionally, the web interface has other important observational and 
model fields for participants to utilize in the forecast generation process. After issuing the high-temporal 
resolution individual forecasts based on model subsets and reporting the anonymous demographics of 
the group (e.g., the forecasting experience of the participants in each group), the desks regrouped and 
discussed the forecasts and behavior of the CLUE subsets. This approach more effectively engaged the 
participants directly with the CLUE subsets, since in prior years participants only interacted with CLUE 
subsets through facilitator-led discussions. After the teams issued and discussed the high-temporal 
resolution forecasts, there was a map discussion summarizing forecast challenges and highlighting 
interesting findings from the previous day open to all tenants of the National Weather Center.  Each day 
of the week also featured a brief discussion of a special topic (Table A1).   

After lunch, the Innovation Desk updated their PSTs, and each desk examined operational 
guidance as a group. Of the five ensemble subsets, three were updated at 1200 UTC to test the impact of 
updated CAM ensemble guidance on the timing forecasts.  Participants that used CLUE subsets for which 
1200 UTC guidance was not available updated their forecasts based on the most recent observational 
data and recent deterministic CAM guidance, such as the HRRR.  Since the forecast process for these 
updates began in the afternoon, participants were instructed to only update their PSTs valid between 
1900 and 1200 UTC.  Participants at the Severe Hazards Desk followed a similar process, but generated a 
new forecast valid from 1900-2300 UTC.   
 Later in the afternoon, scientific evaluations were conducted (summarized in the next section). 
For the final activity of the day on Tuesday through Friday, forecast products using the WoF-prototype 
system, NEWS-e, were generated at both desks. For the Innovation Desk activity, the 1900 UTC initialized 
NEWS-e with 6-h forecast products available at the website 
https://www.nssl.noaa.gov/projects/wof/news-e/realtime/ were used to issue two 1-h time window 
forecasts of total severe valid 2100–2200 and 2200–2300 (i.e., 4–5PM and 5–6 PM CDT). Then, these 
forecasts were updated using 2000 UTC initialized NEWS-e products. Forecasts were drawn by facilitators 
(Clark and Gallo) and informed by small groups of participants interrogating NEWS-e data on their 
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Chromebooks, as well as by the forecast lead (Jack Hales). At the Severe Hazards Desk, participants used 
the NEWS-e data to update their probabilistic hail, wind, and tornado forecasts valid from 2100–0100 
UTC.  

To prepare participants for the NEWS-e activity, a training session was provided 3–4PM on 
Monday of each week. This training session included a description of NEWS-e and provided an overview 
of how to navigate the NEWS-e website and view forecast products.  Following the presentation portion 
of the training, facilitators worked with smaller groups (of ~5 participants) and walked through a test case 
to become familiar with the NEWS-e activity.  After practicing the issuance of a 1-hour outlook and 
update, participants were asked to view, answer, and ask for clarification on a short set of survey 
questions that were completed following each NEWS-e activity session. Twenty-nine questions were 
available in a Google survey form, and consisted of multiple-choice, ranking, and open-ended questions 
designed to capture participants’ perceptions of the NEWS-e products specific to the forecast challenge 
presented in the activity. Finally, participants were made aware of additional NEWS-e-specific survey 
questions to be asked during the verification evaluation activity scheduled first thing on Tue-Fri mornings. 
These questions were appended to the Google survey form that was used for the verification evaluation 
activity that evaluated all experimental forecasts made on the previous day.  

The training session was also used to obtain participants’ consent (per IRB protocol) to take part 
in this activity and answer survey questions. Additionally, participants were asked to provide their 
subjective rating of forecasting experience on a scale of 1–3 (none/minimal, some, and extensive). 
Participants were given examples of what these different rating levels meant. The ratings were used to 
assign participants each day to either group 1 or group 2 of the activity to ensure a balance of forecasting 
experience for each of the outlooks that were issued, as well as to encourage discussion between 
participants of varying professional backgrounds (i.e., operational and research oriented).   

 
 2) FORECAST AND MODEL EVALUATIONS 
 

While much can be learned from examining model guidance and utilizing it to help create 
experimental forecasts in real time, an important and complementary component of SFE2018 was to look 
back and evaluate the forecasts and model guidance from the previous day.  The former activity enables 
comparison of the perceived utility of various operational and experimental guidance systems as part of 
a simulated forecasting process, whereas the latter activity permits assessment of guidance performance 
from a post-event perspective.  There were two periods of formal evaluations during SFE2018.  The first 
was during the morning when experimental outlooks from the previous day generated by both forecast 
teams were examined.  In these next-day evaluations, the team forecasts and first-guess guidance were 
compared to observed radar reflectivity, local storm reports (LSRs), NWS warnings, and Multi-Radar 
Multi-Sensor (MRMS) radar estimated hail sizes.   

The second evaluation period occurred during the afternoon and focused on comparisons of 
different ensemble diagnostics and CLUE ensemble subsets.  The Innovation and Severe Hazards Desks 
conducted two different sets of afternoon evaluations.  These evaluations are discussed in detail in 
Sections 3c and 3d. 
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3.  Preliminary Findings and Results 
 
a) Evaluation of experimental forecast products – Innovation Desk 
 
 1) CONVECTIVE OUTLOOK EVALUATIONS (credit: B. Gallo) 
 
 The first forecasting activity of each day at the Innovation Desk was the generation of a Day-1 
group probabilistic forecast of any severe hazard valid 1600 – 1200 UTC.  These outlooks were rated the 
next day by overlaying the forecast with Local Storm Reports (LSRs), watches, and warnings.  A “practically 
perfect” forecast (Hitchens et al. 2013) was also generated from the LSRs and displayed alongside the 
experimental forecast for reference.  Contours matching current SPC operational probability thresholds 
(5, 15, 30, 45, and 60%) could be issued, as well as 10% or greater probability of a significant severe 
weather event within 25 miles of a point.  An example experimental outlook along with the practically 
perfect outlook is shown in Figure 2.   
 In general, participants thought that the Day-1 outlooks performed well (mean rating of 6.5/10; 
Fig. 3).  Outlooks were given better ratings on high-end days, which are defined as days when the 
practically perfect forecast indicated a 45% or greater probability.  12 of the 24 experiment days were 
high-end according to this criterion, while 8 of these days included experimental outlooks with 45% or 
greater probabilities (Table 3).  Forecast probability magnitudes generally matched the practically perfect 
forecasts within a categorical outlook category; only two days had a category that differed from the 
verification by two categories (Table 4).  Comments indicated that the participants focused most on the 
location and magnitude of the probabilities, penalizing large extents of false alarm, but rewarding 
outlooks that captured all or most of the reports.   
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Figure 2 An experimental outlook (a) and practically perfect forecast (b) overlaid with wind (blue squares), 
significant wind (black squares), hail (green circles), significant hail (black circles), and tornado (red 
inverted triangles) reports. The brown, yellow, red, magenta, and purple contours indicate 5%, 15%, 30%, 
45%, and 60% probability of severe weather within 25 miles of a point. Hatched areas indicate a 10% or 
greater chance of a significant severe report within 25 miles. 

 
Figure 3 Subjective rating of the Day-1 outlook on all days, lower-end days, and high-end days. 
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Table 3 Probabilistic breakdown of lead and practically perfect forecasts during SFE 2018. Probabilities are assigned 
based on the maximum probability within the limited area domain of interest. 

Category # of Days (Lead) # of Days (PP) 
5% 1 3 
15% 7 3 
30% 8 6 
45% 7 8 
60% 1 4 

 
 
Table 4 Maximum probability contour issued for the Day 1 Outlooks and resulting from the practically perfect 

forecasts. Colors indicate the probabilities associated with each forecast. Days in the grey box with orange 
font are Fridays, and those outlooks were not subjectively evaluated by participants on the following day. 

 

Date 
Day 1 Max Probability 
(Lead) Day 1 Max Probability (PP) 

30-Apr 30 15 
1-May 45 45 
2-May 60 60 
3-May 30 15 
4-May 45 60 
7-May 15 30 
8-May 30 5 
9-May 15 45 

10-May 30 45 
11-May 15 5 
14-May 30 60 
15-May 45 60 
16-May 5 5 
17-May 30 45 
18-May 45 45 
21-May 15 30 
22-May 15 45 
23-May 30 45 
24-May 15 30 
25-May 15 15 
29-May 45 60 
30-May 45 45 
31-May 45 60 

1-Jun 45 45 
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2) POTENTIAL SEVERE TIMING (PST) AREA EVALUATIONS (credit: M. Krocak and B. Gallo) 
 
One of the challenges facing the FACETs paradigm is the gap in hazard information between the 

long-lead-time convective outlook probabilities and the short-lead-time warning-scale probabilities.  
Often, the only information between a convective outlook and a warning is a watch or mesoscale 
discussion. To address this gap in hazard information, this work continues that from previous SFEs testing 
timing products that provide information on a sub-daily, regional scale.  Specifically, participants were 
asked to create PSTs indicating the peak 4-h time period when they thought severe weather would occur 
within the 15% contour of the Day 1 full period forecast.   

Participants issued PSTs in small groups, ranging from one to three people, and were each 
assigned an experimental ensemble to incorporate into their forecast process. CLUE subsets used were 
the CAPS Mixed Physics, CAPS Stochastic Physics, HRRRE, and NCAR.  Also, one group used the operational 
HREFv2. Many more fields were available from each subset for participants to draw over than in previous 
years, including environmental fields such as CAPE and storm attribute fields such as simulated reflectivity 
and updraft helicity (UH). Participants issued a preliminary set of forecasts after the Day 1 outlook and 
prior to the morning forecast discussion, and then updated the forecasts in the early afternoon. Three 
subsets (the HRRRE, NCAR, and HREFv2 ensembles) had 1200 UTC forecast cycles available in the 
afternoon; the other participants were asked to solely use the original guidance, plus observed 
environmental trends and operational deterministic guidance, such as later runs of the HRRR. The 
purpose of having participants use ensemble subsets was twofold. First, it allowed participants to explore 
the output of the single ensemble more deeply than if they were tasked with using multiple ensemble 
subsets. Second, it had the participants creating forecasts in an environment that more closely simulated 
operations, when likely only one new tool would be introduced at a time.  A set of example forecasts is 
displayed in Figure 4.   

Figure 4 PST areas issued by each group and the lead forecaster on 29 May 2018. Reports shown occurred from 20-
00 UTC, with green circles, black circles, blue squares, black squares, and red inverted triangles indicating 
hail, significant hail, wind, significant wind, and tornado reports. 
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During the experiment, forecasters were presented with background conceptual reasoning for 
the product and instructions on how to best create PSTs. Previous work has shown that a majority of 
convective outlook day events occur within just 4 h of the 24 h day (Krocak and Brooks 2017). Therefore, 
the idea behind the PST product is that forecasters can, in theory, identify a 4-h period in which the threat 
indicated by the convective outlook probabilities will be concentrated. After synthesizing all of the 
guidance information for the day, participants were broken into small groups and given laptops to draw 
their PSTs. They were all given the same instructions and the following “best practices” – (1) cover the 
15% area, (2) don’t draw an area for every hour, (3) minimize overlap between areas, and (4) keep it 
simple.   

Throughout the experiment, it became evident that there were two prominent theories on how 
best to draw the PSTs. The first includes 2 areas that overlap temporally but not spatially (Fig. 5a). This 
indicates some uncertainty in where the severe reports will be occurring between 0000 and 0100 UTC, 
as either box would be valid. The second theory (Fig. 5b) has both temporal and spatial overlap. The 
justification was that there is some uncertainty about when the severe threat will be occurring in the 
overlapping area, hence the longer time period (2000 to 0200 UTC). 

 

 
Figure 5 PST forecast philosophies (a) temporal overlap with no spatial overlap, and (b) temporal and 

spatial overlap. 
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Feedback from forecasters in SFE2018 included many comments about this year’s visualization 
compared to the isochrone visualization (which was tested in the 2016 and 2017 SFE). Most people liked 
the PST visualization better, as they thought areas were easier to interpret than contours. Representative 
quotes about the strengths and weaknesses of the product are shown in Table 5. 

 
Table 5 Selected quotes from forecasters about the Potential Severe Timing (PST) Product 

Strengths Weaknesses 
I am seeing the applications of this tool 
being extremely useful, especially for 
EMs. 

We need to eliminate overlap when 
possible 

I could see this being really useful 
operationally to provide greater 
information on the timing windows. 

It’s challenging to identify just 4 hours, 
and to differentiate between convective 
initiation and severe report initiation. 

I think we have the ability to do this, and 
guidance is only going to get better. 

We need ensemble guidance products that 
show timing better. 

 
For quantitative evaluation of the PST forecasts, two-by-two contingency tables were 

constructed using local storm reports that occurred between 1600 and 1200 UTC the following day. The 
reports and areas were gridded onto an 80 km grid and then grid points were tallied up for each box in 
the two-by-two table. This process was done for all 24 case days during SFE 2018, and then the probability 
of detection and success ratio was calculated for each day and the full experiment (Fig. 6).  
 

 
Figure 6 Performance diagram of the PST forecasts (blue) for SFE forecast days between April 30 and June 

1. 
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Overall, the PSTs had relatively high PODs, but success ratios were generally below 0.50.  Since 
PSTs were drawn in the morning, often 4-6 hours before the first severe report of the day, they were 
relatively large.  Thus, they captured many of the reports on any given day, but suffered from a large false 
alarm area.   

For the subjective evaluations, each day participants evaluated forecasts issued the previous day.  
They were asked to rate the PSTs issued by the lead forecaster, as well as the forecasts issued by their 
own group.  Finally, participants indicated which ensemble subsets they used, and which group they 
thought performed the best overall.  Typically, the lead forecaster scored quite highly on both the 
preliminary and final PSTs, with a median score of 7/10 for both time frames (Fig. 7). However, the mean 
ratings show a large increase from the preliminary to the final PST areas, and the 25th percentile rating 
increases from 5/10 in the preliminary to 6/10 in the final. The time of the first and last PST issued 
remained constant between the preliminary and final forecasts over the entire sample, with a median 
first PST time of 2000 – 0000 UTC and a median last PST time of 2300 – 0300 UTC. Nine of the twenty-
four days had a shift in the time of the first PST, with a tendency to shift the outlooks later, and eleven of 
the twenty-four days had a shift in the time of the last PST, which also tended to be shifted later. Most 
of the timing adjustments between the preliminary and final outlooks were only a one-hour change, with 
one two-hour change each in the time of first PST and time of last PST, and one three-hour change in the 
time of last PST. Despite the small sample size, we would expect more shifts in the timing of the last PST 
area due to it being closer to the end of the forecast period. Between the preliminary and final outlooks, 
contours could also be added or removed if the forecaster’s certainty increased or decreased. 
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Figure 7 Subjective evaluation distributions for the PST areas from the lead forecaster and from the groups 

evaluating their own PST areas. 
 

Overall, the participant PSTs were not rated as highly as those of the lead forecaster, especially 
the preliminary areas (Fig. 7). The updated, final areas had a similar ratings distribution to the preliminary 
PSTs issued by the lead forecaster.  It is possible that, after seeing the lead forecaster’s preliminary PSTs, 
participants may have modified their own PSTs towards those of the lead forecaster.  Each group typically 
showed improvement from the preliminary to the final outlooks, with the median rating improving one 
point in all groups (Fig. 8). Groups using the HREFv2 and the HRRRE generally gave their forecasts higher 
ratings than groups using the other three ensembles (recall that participants were asked to only rate their 
own group’s forecast). However, when participants were asked to choose which group performed the 
best (looking at both preliminary and final PSTs), the CAPS Stochastic Physics ensemble group was second, 
after the HREFv2 (Fig. 9). The group using the NCAR ensemble had the largest variation in their 
preliminary PST ratings. Further analysis is needed to determine whether there was an improvement in 
the forecasts beyond the perceived improvement shown in the subjective results, particularly since the 
improvement occurred for groups using all ensemble subsets, including those that did not have an 
updated 1200 UTC cycle of guidance. Further analysis is also needed to determine whether the “best 
forecasts” chosen subjectively align with the best forecasts indicated by objective metrics. Finally, 
demographic data collected on the participants will be analyzed to determine whether group 
composition played a role in which group’s forecasts performed the best (i.e., was the group using the 
HREFv2 always composed of forecasters, who typically have more experience forecasting than model 
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developers?). Participants also brought up potential issues in generating this product that will influence 
the design of next year’s experiment. These comments include the potential difficulty of collaborating 
with a partner to create a forecast that both people agree on, and needing increased clarity on how 
closely participants are to follow their assigned experimental model subset when generating their 
forecasts. Other future plans for the PSTs include looking at different visualization options (polygons vs. 
shading), developing automated “first guess” PSTs based on convection allowing model output, and 
developing verification methods that fairly evaluate the quality of PST forecasts. 
 

Figure 8 Subjective evaluations of each group’s initial and final forecasts. 
 

Figure 9 Responses to the question “Which group’s forecasts performed best overall?” 
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 3) NEWS-E EVALUATIONS (credit: J. Choate) 
 

The NEWS-e (Wheatley et al. 2015, Jones et al. 2016) was tested in the SFE for the second year 
during the 2018 season. This prototype WoF system is a frequently updated, regional-scale, on-demand 
convection-allowing ensemble analysis and prediction system, nested within an experimental hourly 
CAM ensemble forecast system (currently the HRRRE). The 2018 configuration changed slightly from 2017 
to produce longer forecasts for 0–6 h predictions of individual convective storms and mesoscale 
environments that provide probabilistic forecast guidance. This guidance includes products such as the 
probability of simulated reflectivity above a threshold at a grid point, and ensemble percentile values 
(e.g., 90th) of fields such as accumulated rainfall, 2–5-km UH, and 0–2-km vertical vorticity. Participants 
were given training on the system before they utilized NEWS-e for the outlook activity. They were also 
asked to respond to a series of questionnaires at different points throughout the activity. These sections 
will be referred to as Training, Outlook Activity, and Questionnaires.  

 
 Training 
 

On Monday of each week, all SFE participants completed training on the NEWS-e system during 
the last hour of the day (3-4pm). This training session was chosen because researchers found that during 
SFE2017, participants spent a majority of their first day at the Innovation Desk trying to orientate 
themselves to the NEWS-e Viewer and were not able to fully contribute to the activity. Furthermore, since 
participants joined the Innovation Desk on different days during the week, the entire group was rarely on 
the same page. The Monday afternoon training allotted time for all participants to interact with several 
members of the NEWS-e development team and ask any questions that arose before they were expected 
to complete a forecast. 

The Monday training session consisted of an explanation of the Warn-on-Forecast program, the 
NEWS-e configuration and verification, and how to navigate the new NEWS-e Viewer. Participants were 
able to follow along with a demonstration on how to navigate the webpage and where certain products 
could be found. Participants were also introduced to the outlook activity and the three questionnaires 
they would be asked to complete each day while working in smaller groups on a test case. This allowed 
participants to navigate the website and become comfortable with the location and meaning of different 
products. This test case also gave participants the opportunity to ask any clarifying questions on the survey 
questions they would answer each day.  

 
Outlook Activity 
 
Starting on Tuesday, participants worked within their Innovation or Severe Hazards Desk groups.  

At the Severe Hazards Desk, the NEWS-e was used to update their probabilistic hail, wind, and tornado 
forecasts valid from 2100-0100 UTC.  At the Innovation Desk, new 1-h severe weather outlooks were 
issued.  The primary goals of these outlooks were to 1) explore how short-term ensemble forecast 
guidance from NEWS-e could be used by groups of forecasters to produce a series of 1-h severe weather 
outlooks and 2) observe how the forecasters’ understanding, use, and attitudes about NEWS-e guidance 
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evolved through the experiment. Each morning, subjective verification of the previous afternoon outlooks 
was performed by comparing them to “practically perfect” hindcasts. 

The outlook activity consisted of producing two 1-h outlooks of total severe probabilities over the 
NEWS-e domain (decided jointly by the WoF researchers and SPC forecasters) between 2100–2200 and 
2200–2300 UTC. These outlooks were produced using only the 1900 UTC NEWS-e 6-h forecast (valid 1900–
0100 UTC) and then updated using the 2000 UTC NEWS-e 5-h forecast (valid 2000–0100 UTC) along with 
current observations including radar, satellite, and surface observations. An overview of the 2018 NEWS-
e configuration is provided in Figure 10. Participants were separated into either Group 1 (led by A. Clark) 
or Group 2 (led by B. Gallo) based on self-ranked forecast experience to try to balance forecast knowledge 
between groups. A third group consisted only of the lead forecaster and a researcher (J. Hales and J. 
Choate, respectively). Initial outlooks produced using the 1900 UTC NEWS-e guidance were submitted to 
an internal database by 2030 UTC and updated outlooks produced from the 2000 UTC NEWS-e guidance 
were submitted by 2100 UTC, resulting in four total outlooks per team, or twelve outlooks total. An 
outlook breakdown can be seen in Figure 11.  

Figure 10 The 2018 NEWS-e configuration. 6 and 5 h forecasts were initialized at 1900 and 2000 UTC, respectively.  
Starting with 2030 UTC and at every half hour interval until 0300 UTC, 3 h forecasts were initialized.   
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Figure 11 Summary of Innovation Desk NEWS-e outlooks. 
 

For this experiment, there were three identical NEWS-e Viewer webpages made and labeled for 
each group of forecasters. Each team was asked to only use the NEWS-e Viewer that was assigned to 
their team. This instruction was given so researchers could track what type of products the participants 
were using during the forecast activity. Observations forecasters used were not tracked. The tracked 
information was used to inform researchers on what types of products were preferred for creating the 
outlooks, how often certain types of products were used, and how some products could possibly 
influence a group’s outlook. For a quick overview of product usage during the activity, products were 
ranked as the “top” products used to create outlooks each day by how often they were requested to the 
server (Fig. 12). Of note is that paintball products which provide both deterministic and probabilistic 
information as well as ensemble spread were used most often. Also, environmental products were used 
more during the prelim rather than final outlook process and member viewer usage dropped by half 
during the final outlook drawing. These products were also able to show us how they influence the 
drawing of outlooks. For example, Figure 13 shows the most used product for each group overlaid by that 
group’s outlook for May 4th. Group 1 drew their highest contour around the probability of UH while Group 
2 focused more on the leaded edge of the percentile graphic of simulated composite reflectivity. 
 
 
 
 

 
 
 

 
 

 
 
 
 
Figure 12 Most requested products from the web-based NEWS-e forecast viewer. 

Group 1  
Group 2 
Lead Forecaster 

Group 1  
Group 2 
Lead Forecaster 

Group 1  
Group 2 
Lead Forecaster 

Group 1  
Group 2 
Lead Forecaster 
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Figure 13 (a) Group 1 (Clark) outlook for total severe valid 2200 – 2300 UTC 4 May 2018 indicated by contours with 

the transparent purple shading (outlined by dotted contour lines) indicating 10% or greater probability of 
significant severe.  The shading shows NEWS-e forecasts for probability of 0-2 km AGL updraft helicity > 30 
m2s-2. (b) Same as (a), except for the Group 2 (Gallo) outlook and the shading shows NEWS-e forecasts of 
the 90th percentile value of simulated composite reflectivity.   

 
The next morning the outlooks were verified against “practically perfect” probabilities and 

verification questions were answered by the participants.  An example of what would be seen each 
morning is shown in Figure 14. Forecast days were only included in these verification diagrams if outlooks 
from both groups were successfully submitted. When comparing all of Group 1’s outlooks to all of Group 
2’s outlooks using reliability diagrams, Group 1 seemed to perform better (Fig. 15a). This comparison is 
based off the Practically Perfect guidance and it is important to remember that skill is a function of the 
scale at which you verify. A forecast would be considered perfectly reliable if it followed the 45-degree 
dashed line. If a point is above the 45-degree line, it represents an under-forecasted event, if it is below 
the 45-degree line, then it was an over-forecasted event. There are further questions to explore when 
considering the verification of these outlooks. An interesting note is that when comparing all of the 
preliminary outlooks to the final outlooks, the preliminary outlooks seems to perform slightly better. One 
would assume that the updated, or final, outlooks would be better predictors of the areas of total severe 
hazards, but this result shows the opposite (Fig. 15b). This may be due to participants feeling like a change 
needed to be made for the sake of the activity. More research needs to be put into understanding their 
decision process while drawing the outlook contours.  

 
Questionnaires 
 
Participants were asked to answer three sets of questions.  Two surveys (the Prelim and Final) 

were taken during the outlook activity and were linked to each group’s webpage.  The third survey was 

(a
)

(b
)
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taken the next morning as part of the daily verification activity. The Prelim survey was completed after 
each group submitted their preliminary outlooks (i.e., the outlooks using the 1900 UTC NEWS-e forecast). 
The Final survey was completed after the final outlooks were submitted (i.e., the outlooks using the 2000 
UTC NEWS-e forecast). These two sets of questions asked about items such as participants’ confidence in 
their group’s forecast, the quality of the NEWS-e forecasts, and to what extent they thought their group’s 
forecast differed from NEWS-e output. The Final survey, taken after the final outlooks, also asked 
questions about that day’s activity overall (e.g., how much participants changed their forecasts from 
preliminary to final, how difficult the forecast was, and how satisfied participants were with the forecast 
overall). Examples of Question 3 from the Prelim and Final questionnaires and the participants’ responses 
can be seen in Figures 16 and 17. An example of one of the questions asked later in the Final survey is 
shown in Figure 18. The verification surveys the next morning were meant to test the participants’ 
perceptions after they had seen how their outlooks performed. This survey asked similar questions as the 
Prelim and Final surveys to see if their thoughts on the outlook performance were influenced by the 
verification contours. An example is shown in Figure 19. The responses to these questionnaires will help 
researchers understand some of the thoughts forecasters had while completing their outlooks, how these 
different perceptions could have affected group performance, and how these perceptions changed after 
participants saw verification results.  

Ongoing research continues to evaluate group outlooks based on different sets of practically 
perfect probabilities. Researchers are also considering different effects on group performance, such as: 
group-leader dynamic, imbalance of group experience, and size and scale of each group’s outlook 
contours.  
 
 

 
  
 
  
 
 
 
 
 
 
 
 
 
 
 
Figure 14 Group 1 (a) Prelim and (b) Final outlooks valid 2200 – 2300 UTC 4 May 2018 (contours), and (c) 

corresponding practically perfect observations (contours).  (d) and (e), same as (a) and (b), except the Group 
2 outlooks.  Locations of storm reports marked in each panel and the black boxes indicate the NEWS-e 
domain. 

(a
)

(b
)

(c
)

(d
)

(e
)
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Figure 15 (a) Reliability diagrams for all Group 1 (red) and Group 2 (blue) outlooks.  (b) Same as (a), except for all 

Prelim (red) and Final (blue) outlooks.   

Figure 16 Survey responses to the question, “Compared to your expectations, how would you rate the quality of the 
1900 UTC NEWS-e forecast in terms of the following?” (a) location, (b) timing, (c) intensity, and (d) 
coverage. 

(a) (b) 
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Figure 17 Same as Fig. 16, except for the 2000 UTC NEWS-e forecast.  
  

 
Figure 18 Summary of responses to the question, “How satisfied are you with the overall forecast performance?” 
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Figure 19 Summary of responses to the question, “How satisfied are you with the overall performance of your team’s 
outlook?” 

 
b) Evaluation of experimental forecast products – Severe Hazards Desk (credit: I. Jirak) 
 
 1) DAY 1 FULL-PERIOD GUIDANCE AND OUTLOOKS 
 
 Experimental probabilistic tornado, hail, and wind outlooks were generated for the Day 1 period 
(i.e., 1600-1200 UTC) during the morning activities of SFE2018.  These experimental outlooks and HREF-
based hazard guidance were subjectively evaluated (using a rating scale from 1-10) on the following day 
using local storm reports, NWS warnings, and radar-derived products as verification sources.  The HREF-
based guidance included the HREF/SREF calibration approach (Jirak et al. 2014) for tornadoes, hail, and 
wind, the STP calibration approach for tornadoes (Gallo et al. 2018a), and a machine-learning approach 
for hail (Gagne et al. 2017).  An example of the web-based interface used to make these evaluations and 
comparisons is shown in Fig. 20. 
 For the full-period probability forecasts of tornadoes and severe hail, the HREF/SREF calibrated 
guidance compared favorably in terms of subjective ratings to the experimental outlooks (Fig. 21), which 
is noteworthy considering that the HREF/SREF guidance was available to the forecasters while generating 
the outlooks.  The STP calibrated guidance for tornadoes and the machine-learning (ML) guidance for hail 
generally received lower subjective ratings for the full-period forecasts compared to the HREF/SREF 
guidance and the experimental outlooks (Fig. 21).  For the probabilistic severe wind outlooks, the 
forecaster-generated outlooks were often rated higher than the HREF/SREF guidance, indicating the 
calibrated guidance for severe wind is not as mature as the guidance for tornadoes and hail. 
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Figure 20 Six-panel comparison plot used to conduct the evaluation of the calibrated guidance and experimental 

outlooks issued during the 2018 HWT SFE.  The full-period guidance and outlooks for tornadoes on 1 May 
2018 are shown for the HREF/SREF calibrated guidance (top-left panel), experimental outlook (top-middle 
panel), practically perfect hindcast (Hitchens et al. 2013; top-right panel), HREF STP calibrated guidance 
(bottom-left panel), experimental outlook (repeated; bottom-middle panel), and practically perfect 
hindcast (repeated; bottom-right panel).  The observed tornado reports (upside-down red triangles) are 
overlaid as a reference for subjective verification. 

 

 
Figure 21 Distribution of subjective ratings (1-10) for calibrated hazard guidance and experimental probabilistic 

outlooks for tornado (red; left), hail (green; middle), and wind (blue; right) for Day 1 (i.e., 1600-1200 UTC). 
The boxes span the interquartile range while the whiskers extend to the 10th and 90th percentiles.  The 
horizontal dash (-) indicates the median rating, and the circle (●) indicates the mean rating. 
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 2) DAY 1 4-H FORECASTS 
 

Experimental, overlapping 4-h probabilistic outlooks were also generated for the Day 1 period 
during SFE2018.  First-guess 4-h probabilities for tornadoes, hail, and wind were generated using the 
temporal disaggregation technique (Jirak et al. 2012) by incorporating the full-period, forecaster-
generated hazard outlook to constrain and scale the magnitude and spatial extent of the 4-h HREF/SREF 
calibrated probabilities.  These first-guess probabilities were available during the forecast process and 
then compared in the next-day evaluation to the forecaster-issued probabilities, providing an indication 
of how much a forecaster can improve upon the 4-h first-guess guidance.  For the 1700-2100 UTC outlook 
(Fig. 22), which was issued in the morning, forecasters were generally able to improve upon the 
disaggregated first-guess guidance for hail and wind (i.e., fewer lower rated forecasts) while the tornado 
forecasts were rated about the same as the first-guess guidance during an overall climatologically below-
average period for tornadoes (i.e., the high ratings are largely a result of low/no probabilities with no 
tornado occurrence).  In general, the overlapping distribution of ratings suggests that the guidance is a 
reasonable first guess that can be used by the forecasters. 

 
Figure 22 Same as Fig. 21, except for 4-h outlooks valid 1700-2100 UTC for the HREF/SREF calibrated guidance 

(left), first-guess guidance (middle), and the forecaster-issued outlook (right) for each hazard.  
 

Experimental 4-h outlooks were also generated in the afternoon for the 1900-2300 UTC period 
(i.e., 0-4 h period).  For this period, the experimental outlooks for hail and wind were an improvement 
over the calibrated and first-guess guidance (Fig. 23) while the experimental tornado outlooks were rated 
slightly lower overall than the first-guess guidance (again during a relatively quiet period of tornado 
activity). 
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Figure 23 Same as Fig. 22, except for the period valid 1900-2300 UTC. 
 

Finally, experimental 4-h outlooks were generated for the 2100-0100 UTC period.  In addition to 
the HREF/SREF calibrated and first-guess guidance, a morning (i.e., preliminary) forecast was made for 
2100-0100 UTC, along with an afternoon update to this forecast period that included the incorporation of 
the latest CAM guidance (e.g., HRRR, NEWS-e).  The HREF/SREF calibrated guidance, first-guess guidance, 
preliminary forecasts, and final forecasts of tornado, hail, and wind for this period were subjectively rated 
and compared (Fig. 24).  In general, the forecaster was able to improve upon the first-guess guidance in 
the preliminary forecasts for this period.  Updating the forecasts in the afternoon with the latest 
observations and CAM guidance also generally resulted in further improvements in the experimental 
outlooks, as evidenced by the higher subjective ratings. 

Figure 24 Same as Fig. 3, except for the period 2100-0100 UTC and including a preliminary and final forecaster-
issued outlook. 
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 A new aspect to issuing experimental outlooks this year was dividing the participants into small 
groups and assigning them to use a specific CAM ensemble in generating the 4-h outlooks.  While there 
are a number of uncontrolled aspects in doing this as part of an experiment, it did allow participants to 
investigate the individual CAM ensembles in more detail.  Overall, the groups that used the HREF and 
HRRRE in generating the 4-h experimental outlooks were more likely to have the highest rated forecast 
than any of the other groups (Fig. 25).   
 

 
Figure 25 Pie charts for the CAM ensemble groups (HREFv2, HRRRE, NCAR, Mixed Physics, Stochastic Physics and 

other – no “best” group indicated) with the highest rated preliminary tornado (left), hail (middle), and 
wind (right) outlooks for 2100-0100 UTC. 

 
c) Model Evaluations – Innovation Desk (credit: B. Gallo) 
 
 1) FV3 PHYSICS COMPARISON 
 
 CAPS ran multiple convection-allowing configurations of the FV3 model, experimenting with 
varied microphysics and planetary boundary layer schemes. To compare these subjectively, participants 
evaluated 2-D storm attribute fields such as simulated reflectivity and UH, 2-D storm environment fields 
such as CAPE, temperature, and dewpoint, and point soundings to examine vertical structure within the 
model.  

Overall, not much difference was seen between the different boundary layer schemes, in both 
storm attribute fields such as UH and reliability (Fig. 26a, top) and environmental fields such as 
thermodynamic variables (Fig. 26a, bottom). Though the EDMF scheme does have a median that is one 
point higher than the other schemes, it also has a smaller sample size, so it is unknown if this difference 
is meaningful. When participants were asked which thermodynamic variable showed the largest 
difference between members with different PBL schemes, most often CAPE was selected, either alone or 
in conjunction with another variable such as temperature or dewpoint (Fig. 26b). 

The sounding evaluation showed similar results to the boundary layer evolution, with a median 
rating of 6/10 (Fig. 26c). Participants were also asked what features they noticed differed most between 
the ensemble members, and their answers most often referenced low-level moisture, followed by the 
temperature and the inversion structure (Fig. 27). In comments, participants often noted that there 
wasn’t much diversity in the soundings and that they were all often too moist. 
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Figure 26 Subjective evaluation results from the FV3 comparison, looking at (a) different PBL schemes, (b) what 
thermodynamic variable showed the largest differences within the ensemble, and (c) the sounding 
structure compared to observed soundings. 

Figure 27 A word cloud highlighting participants’ responses to the question, “Which aspects of the soundings 
differed most within the ensemble? (E.g., inversion structure, low-level moisture, etc.)”. The larger a word 
is in the cloud, the more often it was mentioned. 

(a) (b) 

(c) 
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In comparing the two microphysics schemes tested within the CAPS FV3 ensemble (Thompson 
and NSSL), participants were shown two members using each of the schemes. One of the members used 
the MYNN PBL scheme, and one showed the YSU PBL scheme. This part of the evaluation focused on the 
reflectivity and UH location, reflectivity magnitude, and storm mode, to try to determine which aspects 
of the storms were being well-captured by each scheme. When looking at the location of storms, most 
often the Thompson members were indicated as better than the NSSL members (Fig. 10). However, with 
respect to reflectivity magnitude, the NSSL members were more often better than the Thompson 
members, or the members were rated as roughly equivalent. Thus, opposite results were found for 
reflectivity/UH location and reflectivity magnitude. Regarding storm mode, the most common response 
was that the two schemes were roughly equivalent. When one scheme was favored regarding storm 
mode, it was the Thompson members.  

Figure 28 Subjective evaluation responses comparing the two microphysics schemes implemented in the FV3 
ensemble.  
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 2) UK MET OFFICE EVALUATION 
  
 The UK Met Office provided two versions of their Unified Model (UM) to the 2018 SFE, a global 
version with grid spacing of approximately 10 km at the mid-latitudes, and a high-resolution version with 
2.2 km grid spacing. These two versions were compared to gain more insight into the source of errors in 
the regional convective-scale model. Environmental fields such as temperature and dewpoint were 
examined, as were the rain rates for each model. In addition, soundings were also compared between 
these two configurations. 

Similarities between the two models can be seen in the overlapping distributions of the soundings 
(Fig. 29d), which aligns with comments from the participants. However, the regional soundings had slightly 
higher ratings overall than the global soundings. The most pronounced differences occurred in the 
dewpoint (Fig. 29b) and rain rate (Fig. 29c) fields. In both of these fields, the regional model garnered 
higher ratings than the global model, with the global having many more rankings in the 3/10–5/10 range 
than the regional model. The temperature ratings (Fig. 29a) had smaller differences between the models 
than the other fields, but the regional again scored slightly higher than the global model. Comments from 
participants often cited the dew points as the field that showed the largest difference, and also often 
discussed the advantage of the higher-resolution model explicitly depicting convection and its influence. 
 

Figure 29 Subjective evaluation responses for the regional (solid bars) and global (striped bars) UM (a) temperature, 
(b) dewpoint, (c) and rain rate fields, and (d) soundings. Distributions are plotted as the frequency of 
responses to account for different sample sizes between the regional sounding sample (n=127) and the 
global sounding sample (n=115). 
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As mentioned previously, participants noted several occasions where the global and regional 
looked extremely similar as far as the sounding structure goes, and even noted multiple instances where 
the global sounding structure was better than the sounding structure from the high-resolution model. 
This was reflected in participant responses to questions asking specifically about the degree of difference 
between the soundings (Fig. 30a) and rain rate fields (Fig. 30b,c). More major differences were seen 
between the magnitude and placement of important features in the rain rate than between the sounding 
characteristics. This result is somewhat unsurprising given the difference in grid spacing. As in previous 
years, participants commented on the inversion structure depicted in both versions of the UM, noting 
that the UM often was able to capture the sharpness and magnitude of the inversion structures. 

Figure 30 Responses indicating the degree of difference between the regional and global UM 
configurations regarding (a) soundings, (b) rain rate important feature magnitude, and (c) rain 
rate important feature placement.  

 
 3) STOCHASTIC, SINGLE, and MIXED-PHYSICS EVALUATION 
 

Three WRF-ARW-based ensembles were compared that all had the same perturbed initial 
conditions and lateral boundary conditions, but different sets of physics. One ensemble had mixed 
physics, one had single physics, and one had stochastic physics. The physics configurations for the single 
and stochastic physics ensembles were the same, and were designed based on the HRRR/RAP physics 
suite. Stochastic perturbations were applied to multiple parameters within the MYNN PBL scheme and 
Thompson microphysics in the stochastic physics ensemble. Participants subjectively evaluated three 
severe hazard fields within the experiment: 2–5 km UH, maximum updraft speed, and 10 m wind speed. 
Objective evaluation of the reflectivity and surrogate severe fields based on UH took place after the 
experiment. A bug in the code was also discovered post-experiment that caused the stochastic 
perturbations to be smaller in magnitude than intended, so caution should be exercised in the general 
applicability of the results in this section.  

Reflectivity at each hour was examined using the fractions skill score (FSS; Roberts and Lean 2008), 
to highlight ensemble performance during the peak afternoon convective period. These forecasts were 
verified using MRMS reflectivity data. The mixed-physics ensemble performed better at the peak Day 1 
convective period (forecast hours 18-26), but the skill drops off more sharply in the overnight periods (Fig. 
31a). The single and stochastic ensembles perform quite similarly, with the single physics ensemble 
reflectivity performing slightly better than the stochastic physics ensemble.  The reliability diagram (Fig. 
31b) reveals the advantage of increased spread in a mixed-physics ensemble that results in less of an 
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overconfident/underdispersive ensemble when compared to the single- and stochastic-physics 
ensembles. 
 

 
Figure 31 Composite reflectivity results for (a) hourly FSS values and (b) reliability of probabilistic forecasts of 

reflectivity greater than 40 dBZ within a 20 km radius. 
 

Different UH thresholds were used to test the surrogate severe fields, ranging from 25 m2s-2 to 
150 m2s-2. The highest FSS occurred at thresholds of 50 m2s-2 and 75 m2s-2, and the mixed physics achieved 
a higher FSS than the single or the stochastic physics ensembles at any given threshold (Fig. 32). The 
threshold differences were relatively consistent between the forecast thresholds except for the 25 m2s-2 
threshold, which had smaller differences between the mixed and the stochastic physics ensembles than 
the other thresholds. 

 
Figure 32 Ensemble FSS for surrogate severe fields generated using different UH thresholds. 

(a) (b) 
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Overall, objective differences were relatively small between all three ensembles. This trend was 
also seen in the subjective evaluations, which showed quite similar rating distributions (Fig. 33), 
particularly for UH and updraft speed. Mean subjective ratings for UH were actually highest in the 
stochastic physics ensemble, contrary to the objective results, but the differences in the means between 
all of the ensembles were small enough that this difference is likely insignificant. Participants also 
remarked on the similarity of the ensembles in the comment section of the evaluation, with many 
comments first describing the behavior of all of the ensembles and later commenting on the specifics that 
may have led them to give slightly different ratings to each ensemble. The largest differences between 
the subjective evaluations occurred with 10 m wind forecasts. For these forecasts, the mixed physics 
performed better than the single and stochastic physics, with a higher mean and 75th percentile value.  

Figure 33 Subjective evaluation results for the ensemble physics experiment, looking at hourly maximum fields. 
Median values are highlighted by the red lines. 

 
 4) STOCHASTIC MICROPHYSICS COMPARISON 
 
 One member of the 2018 CLUE implemented a stochastically perturbed microphysics scheme. 
Reflectivity, UH, and simulated satellite were examined in this comparison, which was only done on a 
small subset of the SFE 2018 cases (n = 10 days) due to time constraints. Participants saw very small 
differences between the stochastically perturbed and the non-perturbed member, in the reflectivity and 
UH fields, as well as in the temperature and dewpoint fields. The simulated satellite fields showed that 
both members were producing simulated clouds that were about the correct size. Results from this year 
will be used to inform the design of the stochastic perturbations in the microphysics scheme, and a more 
thorough investigation of the stochastically perturbed microphysics scheme is planned for SFE 2019.  
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5) CAM SCORECARD 
 
 In collaboration with the Developmental Testbed Center (DTC), a convection-allowing model 
(CAM) scorecard verification technique was implemented in SFE 2018. The deterministic models initially 
tested were the NSSL-FV3, GFDL-FV3, and HRRRv3, and the initial ensemble systems were the HREFv2 
and the HRRRE. Fields included in this first iteration of the CAM scorecard were simulated reflectivity and 
surrogate severe fields. The surrogate severe fields used a sigma value of 120 km in the Gaussian 
smoother and multiple UH thresholds. Initial verification metrics included the CSI and the FSS. Results for 
individual metrics were available online in graph and table formats, and at the end of the experiment, 
summary scorecards (Fig. 34) encompassing the entire SFE were presented to participants at the morning 
forecast discussion. Ongoing work is underway to add environmental fields such as temperature, 
dewpoint, and wind into the scorecard.  Additional work on evaluating how best to determine model 
thresholds of variables such as UH is needed, given differing model climatologies. From the threshold 
approach used in SFE 2018, future experiments will move to a percentile approach. Finally, efforts to 
generate the scorecard real-time are planned for SFE 2019. 

 
Figure 34 The CAM scorecard comparing the GFDL FV3 and NSSL-FV3 simulated composite reflectivity fields. 
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d) Model Evaluations – Severe Hazards Desk 
 

1) EVALUATION of DETERMINISTIC CAMS (credit: B. Gallo and I. Jirak) 
 
 For the 2018 HWT SFE, there were several global versions of FV3 run with convection-allowing 
nests over the CONUS. Three different 0000 UTC experimental versions of FV3 with ~3-km grid spacing 
over the CONUS were examined and compared to the now-operational HRRRv3 and the UK Met Office 
convection-allowing version of the UM to gauge performance at convective scales.  An example of the 
reflectivity forecasts from these deterministic CAMs is provided in Figure 35.   
 

 
Figure 35 Example of subjective comparison plots used for rating CAM performance at convective scales valid at 2200 

UTC on 1 June 2018.  The 21-h forecasts of composite reflectivity are shown for the a) FV3 NSSL (upper-left 
panel), b) FV3-GFDL (upper-middle panel), c) FV3-CAPS (upper-right panel), d) HRRRv3 (lower-left panel), 
and e) UK Met Office UM.  The bottom-right panel shows the observed composite reflectivity at 2100 UTC 
on 1 June 2018. 

 
 Top-of-the-hour composite reflectivity fields from the deterministic CAMs were subjectively 
evaluated by SFE participants for correspondence with timing, intensity, coverage, and mode of observed 
composite reflectivity from 13-12Z daily and assigned a rating on a scale of 1-10, with 10 being best.  The 
HRRRv3 was the highest-rated deterministic CAM during the five-week SFE (Fig. 36) while the GFDL version 
of the FV3 was the lowest rated CAM during the SFE, largely owing to an overforecast of coverage and 
intensity of convective storms (see Figure 35 as an example).  The other three deterministic CAMs (i.e., 
FV3-NSSL, FV3-CAPS, and UK Met Office UM) fell in the middle of the pack with similar mean and median 
ratings (i.e., ~5/10). 
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Figure 36 Box-and-whiskers plot of subjective ratings (1-10) for deterministic CAM reflectivity forecasts from 0000 

UTC during the five-week 2018 HWT SFE.  The boxes represent the interquartile range, and the whiskers 
represent the 10th and 90th percentiles.  The crosses represent the median ratings, and the circles represent 
the mean ratings. 

 
Model climatologies of UH differed drastically over the course of the experiment. At both the 

native grid resolution (Fig. 37, dashed lines) and a coarsened 80-km grid resolution (Fig. 37, solid lines), 
FV3 UH values were consistently larger than those of the HRRRv3 at a given percentile, often by nearly an 
order of magnitude. This trend was noted first in SFE 2017, and continues for SFE 2018. These results again 
highlight the need to use UH percentiles rather than fixed thresholds to ensure fair comparisons between 
dynamical cores and prevent a skewing of verification scores due to systemic climatological differences 
between models.  
 To measure severe weather forecasting skill, surrogate severe fields were calculated at 100 
different percentiles and 53 different s values for the deterministic FV3 versions and the HRRRv3, and 
then verified against LSRs. For each of these percentile-s sigma combinations, contingency tables were 
constructed at 20 different percentage thresholds, starting at 2% and then in 5% increments from 5% to 
95%. Each of these points was then plotted on a performance diagram (Roebber 2009; Fig. 38) to get an 
overall view of the model performance. Across most thresholds, the HRRRv3 outperforms all FV3 
configurations in terms of CSI. Of the FV3 versions, the NSSL FV3 and the CAPS FV3 are often close, with 
the NSSL-FV3 slightly outperforming the CAPS FV3 in terms of CSI. The GFDL-FV3 performs worse than the 
other FV3 configurations shown. 
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Figure 37 Model UH climatologies for the FV3 versions and HRRRv3 during SFE 2018. Solid lines are the 
climatologies at the 80-km grid used to construct surrogate severe fields, and dashed lines are the 
climatologies at the native grid resolutions (~3 km).  

Figure 38 Performance diagram summary of three deterministic FV3 models and HRRRv3. Solid lines are lines of 
constant CSI, and dashed lines are lines of constant bias. 

 
These objective results match participants’ impressions as conveyed by the subjective 

evaluations (Fig. 36). For example, participants often noted that the GFDL-FV3 was creating too many 
areas of intense reflectivity and UH compared to observations. While participants often noted that the 
models were behaving similarly, the GFDL-FV3 was often singled out as having the wrong mode (i.e., 
developed convection into a linear system far too early) or being too convectively active overall. It should 
also be noted that the UH was displayed once a certain threshold of UH was exceeded – some participants 
indicated that the visualization thresholds should likely be adjusted to account for climatology as was 
done in the objective verification. However, the relatively consistent climatologies between the FV3 
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members seen in Figure 37 suggest that the subjective results showing a lower rating for the GFDL-FV3 
compared to the NSSL-FV3 and the CAPS-FV3 are not due to climatology alone.  
 
 2) CLUE: 0000 UTC CAM ENSEMBLES (credit: I. Jirak) 
 

Several experimental CAM ensembles initialized at 0000 UTC were compared to the operational 
HREF, which serves as the performance baseline for experimental CAM ensembles being considered for 
operational implementation. The subjective component of the evaluation examined ensemble forecasts 
(i.e., ensemble maximum and neighborhood probabilities) of hourly maximum fields (HMFs) of UH, 
updraft speed, and 10-m wind speed relative to LSRs of hail, wind, and tornadoes.  The HREF was 
compared to ensemble subsets from the 2018 CLUE with advanced ensemble-based data assimilation: 
HRRRE, NCAR EnKF, CAPS EnKF, and the OU MAP Hybrid ensemble system.   

An example of how these subjective comparisons were conducted during the 2018 HWT SFE is 
shown in Fig. 39 for 1 May 2018.  In the 24-hour ensemble probability plots of updraft helicity, the HREF 
(Fig. 39, top/bottom left panels) best captured the highest density of severe weather reports within the 
area of the highest UH probabilities, resulting in higher subjective ratings from participants.   In contrast, 
the HRRRE (Fig. 39, top middle panel) UH probabilities are offset to the northeast of the where the severe 
weather occurred, garnering lower subjective ratings from participants for this forecast.  This type of 
subjective comparison and evaluation of 0000 UTC CAM ensembles occurred daily during the five-week 
SFE. 

Figure 39 Six-panel comparison plot used to conduct the evaluation of the 0000 UTC CLUE CAM ensembles during the 
2018 HWT SFE.  The 24-h neighborhood UH probability forecasts exceeding 75 m2/s2 valid for 1 May 2018 
are shown for the operational HREFv2 configuration (top-left panel), HRRRE (top-middle panel), NCAR 
ensemble (top-right panel), HREFv2 (repeated; bottom-left panel), OU MAP ensemble (bottom-middle 
panel), and CAPS EnKF (bottom-right panel).  The observed tornado reports (upside-down red triangles), 
severe hail reports (green circles), and severe wind reports (blue squares) are overlaid as a reference for 
subjective verification. 
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A summary of the distribution of subjective ratings for the 0000-UTC initialized CAM ensembles 
is shown in Figure 40 for the 2018 HWT SFE.  The HREF tended to have the highest subjectively rated 
forecasts (i.e., highest mean, median, and mode ratings) for severe weather guidance compared to the 
CLUE ensembles (Fig. 40).  The OU MAP and CAPS EnKF ensembles were the next-highest-rated 
ensembles followed by the HRRRE and NCAR ensemble.   

 
Figure 40 Distributions of subjective ratings (1-10) by SFE participants of HMFs over a mesoscale area of interest for 

the forecast hours 13-36 for various 0000 UTC CLUE CAM ensembles compared to the HREF. 
 
 3) CLUE: 1200 UTC CAM ENSEMBLES (credit: I. Jirak) 
 
 Three 1200-UTC initialized CAM ensembles were compared to time-lagged (TL) ensembles 
generated from HRRRv3 during the 2018 NOAA HWT SFE: the operational HREF, HRRRE, and NCAR 
ensemble.  Two HRRR-TL ensembles based at 1200 UTC were constructed: 1) HRRR-TL4: consisting of four 
(4) 1-h time-lagged members (i.e., 12, 11, 10, and 09 UTC runs) and 2) HRRR-TL6, which adds the 6- and 
12-h time-lagged members to HRRR-TL4 (i.e., 12, 11, 10, 09, 06, and 00 UTC runs).   These 1200 UTC CAM 
ensembles were evaluated subjectively based on 4-hour hourly maximum field (HMF) forecasts (e.g., UH) 
for severe weather guidance. 
 An example of how these subjective comparisons for the 1200 UTC ensembles were conducted 
during the 2018 HWT SFE is shown in Figure 41 for the 1 May 2018 severe-weather event.  In the 4-hour 
ensemble probability plots of updraft helicity, the HREF (Fig. 41, top/bottom left panels) nicely captures 
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the highest density of severe weather reports within the area of the highest UH probabilities while the 
HRRRE (Fig. 41, top middle panel) UH probabilities are elongated too far to the northeast of the where 
the majority of severe weather reports occurred.  The NCAR ensemble (Fig. 41, top right panel) is 
underdispersive leading to an overconfident, yet accurate, forecast, and the HRRR-TL ensembles (Fig. 41, 
bottom middle/right panels) are also underdispersive/overconfident, but still nicely encompass the 
reports within the UH probability envelope. 

 
Figure 41 Six-panel comparison plot used to conduct the evaluation of the 1200 UTC CLUE CAM ensembles during the 

2018 HWT SFE.  The 4-h neighborhood UH probability forecasts exceeding 75 m2/s2 valid at 0200 UTC on 2 
May 2018 are shown for the operational HREFv2 configuration (top-left panel), HRRRE (top-middle panel) , 
NCAR ensemble  (top-right panel), HREFv2 (repeated; bottom-left panel), HRRR-TL4 ensemble (bottom-
middle panel), and HRRR-TL6 ensemble (bottom-right panel).  The observed tornado reports (upside-down 
red triangles), severe hail reports (green circles), and severe wind reports (blue squares) are overlaid as a 
reference for subjective verification. 

 
 Ensemble maximum and neighborhood probabilities of HMF fields (typically UH and 10-m wind 
speed) were subjectively evaluated by SFE2018 participants for correspondence with severe weather 
reports from 16-03Z and assigned a rating on a scale of 1-10, with 10 being best.  HREF routinely had the 
highest subjectively rated forecasts (Fig. 42), likely owing to a more diverse ensemble forecast 
represented by broader probabilistic fields.  The formal ensembles, HRRRE and NCAR, generally had lower 
subjective ratings than the HREF for the 1200-UTC initialized forecasts.  The HRRR-TL ensembles fared well 
in subjective ratings, commonly outperforming the HRRRE, a formal initial-condition ensemble with 
ensemble DA, using the same model configuration.  This result highlights the current usefulness of HRRR-
TL ensembles, which are an underutilized resource in NWS severe weather operations, given that the data 
(i.e., HRRR) already exist operationally and are updated on an hourly basis. 
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Figure 42 Distributions of subjective ratings (1-10) by SFE participants of HMFs over a mesoscale area of interest for 
the forecast hours 4-15 for various 1200 UTC CLUE CAM ensembles compared to the HREF. 

 
 4) NEWS-E FORECASTS (credit: I. Jirak) 
 
 After the first two weeks of the 2018 HWT SFE, it became apparent that forecasts from the NSSL 
Experimental Warn-on Forecast System for ensembles (NEWS-e) should be subjectively evaluated and 
compared to operationally available model output.  Therefore, during the last three weeks of the 2018 
HWT SFE, the 1900 and 2000 UTC-initialized NEWS-e forecasts were compared to HRRR-TL ensembles.  
The 1900 UTC and 2000 UTC HRRR-TL ensembles were constructed similarly to the 1200 UTC HRRR-TL4 
and HRRR-TL6 discussed previously.  The HRRR-TL4 consisted of the last four (4) 1-h time-lagged members 
(i.e., 19, 18, 17, and 16 UTC runs for the 1900 UTC version and 20, 19, 18, and 17 UTC runs for the 2000 
UTC version) while the HRRR-TL6 added the 6- and 12-h time-lagged members to HRRR-TL4 (i.e., 19, 18, 
17, 16, 13, and 07 UTC runs for the 1900 UTC version and 20, 19, 18, 17, 14, and 08 UTC runs for the 2000 
UTC version).   These CAM ensembles were evaluated subjectively based on 4-hour hourly maximum field 
(HMF) forecasts (e.g., updraft helicity – UH) for severe weather guidance. 
 An example of how these subjective comparisons for the 1200 UTC ensembles were conducted 
during the 2018 HWT SFE is shown in Fig. 43 for severe weather on 18 May 2018.  In the 4-hour ensemble 
probability plots of updraft helicity, the limited-area domain NEWS-e (Fig. 43, left panel) better captures 
the severe weather reports within the UH probability envelope while the HRRR-TL ensembles (Fig. 43, top 
middle and right panels) do not have UH probabilities extending into the Texas panhandle, where severe 
weather was observed.   



 46 

Figure 43 Three-panel comparison plot used to conduct the evaluation of the 1900 and 2000 UTC NEWS-e during the 
2018 HWT SFE.  The 4-h neighborhood UH probability forecasts exceeding 75 m2/s2 valid for 0100 UTC on 
19 May 2018 are shown for the 2000 UTC NEWS-e (left panel), HRRR-TL4 (middle panel),  and HRRR-TL6 
(right panel).  The observed tornado reports (upside-down red triangles), severe wind reports (blue squares), 
severe hail reports (green circles), and observed radar-derived maximum estimated size of hail (MESH; pink 
swaths) are overlaid as a reference for subjective verification. 

 
Ensemble maximum and neighborhood probabilities of HMF fields (typically UH and 10-m wind 

speed) from the NEWS-e and HRRR-TL ensembles were subjectively evaluated by SFE2018 participants 
during the final three weeks for correspondence with severe weather reports from 2000-0100 UTC and 
assigned a rating on a scale of 1-10, with 10 being best.  The NEWS-e forecasts generally had slightly higher 
subjectively rated forecasts than the HRRR-TL ensembles (Fig. 44), but the updated 2000 UTC NEWS-e run 
did not typically result in a higher-rated forecast compared to the 1900 UTC run.  For the HRRR-TL 
ensembles, the 6-member version did result in slightly higher-rated forecasts than the 4-member version.  
For many cases and events, the NEWS-e produced better ensemble forecasts for severe weather events 
than the HRRR-TL ensembles, highlighting its potential utility for operations.  It is worth noting that the 
small domain of the NEWS-e (i.e., smaller than the daily mesoscale sectors examined during the 2018 
HWT SFE) limits its utility for regional or larger-scale severe weather events. 

Figure 44 Distributions of subjective ratings (1-10) by SFE participants of HMF forecasts over a mesoscale area of 
interest for the forecast hours 1-6 for the 1900 UTC runs (on the left) and forecast hours 1-5 for the 2000 
UTC runs (on the right) for the NEWS-e, HRRR-TL4, and HRRR-TL6. 
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 5) HREF CONFIGURATIONS (credit: B. Gallo, I. Jirak, and B. Roberts) 
 

The High-Resolution Ensemble Forecast system version 2 (HREFv2) was implemented in the NWS 
on 1 November 2017 as an operational version of the SPC Storm-Scale Ensemble of Opportunity (SSEO).  
Thus, the operational HREFv2 serves as a meaningful baseline against which experimental and future CAM 
ensembles should be compared for consideration of operational implementation. With the July 2018 
operational implementation of the extended HRRR runs at 0000, 0600, 1200, and 1800 UTC to 36 hours, 
there is an opportunity to include the HRRR model as an additional HREF member.  Multiple experimental 
configurations of the HREF were tested and evaluated during the 2018 HWT SFE to help inform how to 
best configure the next operational version of HREF (i.e., v2.1).  The candidate HREFv2.1 configurations 
included versions that add the extended HRRR runs to the HREFv2, as well as versions that remove some 
or all of the time-lagged members.   

The HREFv2 consists of eight members with half of the members being time-lagged runs.  The 
models are run at ~3-km grid spacing, using a multi-model (WRF-ARW & NMMB), multi-initial condition 
(NAM & RAP), and multi-physics approach to diversify forecast solutions (Table 6).  To provide an 
evidence-based approach for making configuration decisions at the Environmental Modeling Center 
(EMC), several potential HREF configurations were examined and evaluated during the 2018 HWT SFE, 
including the addition of the HRRR (Table 7).  The evaluation focused on HREF configurations that would 
maintain forecast diversity (i.e., multi-core, multi-IC).  These HREF configurations (Table 8) included the 
current HREFv2 configuration for comparison with five other candidate HREF configurations that added 
the HRRRv3, as well as four versions that removed selected time-lagged members. 

 

Table 6 HREFv2 member configuration showing ICs/LBCs, planetary boundary layer (PBL) schemes, and microphysics 
schemes. *SPC uses the 12-h time-lagged NAM Nest while NCO uses the 6-h time-lagged NAM Nest in 
HREFv2 products. 

Member ICs/LBCs PBL Micro 

HRW NSSL NAM/NAM -6h MYJ WSM6 

HRW NSSL -12h NAM/NAM -6h MYJ WSM6 

HRW ARW RAP/GFS -6h YSU WSM6 

HRW ARW -12h RAP/GFS -6h YSU WSM6 

HRW NMMB RAP/GFS -6h MYJ F-A 

HRW NMMB -12h RAP/GFS -6h MYJ F-A 
NAM Nest NAM/NAM MYJ F-A 
NAM Nest -12h* NAM/NAM MYJ F-A 
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Table 7 Same as Table 6, except for the HRRRv3 configuration, as potential addition(s) to the HREFv2.1. 

Member ICs/LBCs PBL Micro 
HRRRv3 RAP/RAP -3h MYNN Thompson 

HRRRv3 -6h RAP/RAP -3h MYNN Thompson 
 

Table 8 Different HREF configurations explored during the 2018 HWT SFE. Left column includes the name of the 
configuration, including time-lagged (TL) members, a description of the configuration, and the total number 
of ensemble members. 

HREF Config Description # 

HREFv2 Current Config (Table 1) 8 

HREFv2+HRRR Add HRRR & HRRR TL 10 
HREFv2+HRRR 
(No TL) 

Remove all TL members 5 

HREFv2+HRRR 
(No HRRR TL) 

Remove HRRR TL member 9 

HREFv2+HRRR 
(No NMMB TL) 

Remove NMMB TL members 8 

HREFv2+HRRR 
(No ARW TL) 

Remove ARW TL members 7 

 
 
Forecasts from the different HREF configurations were available for next-day evaluation during 

the 2018 HWT SFE, providing an opportunity for subjective comparisons among the configurations with 
regard to providing severe weather guidance.  The HWT SFE participants examined the forecasts from the 
different HREF configurations using a multi-panel plot with observational overlays.  Then, the participants 
provided a subjective rating of the forecasts based on their assessment of the utility of this guidance for 
a severe weather forecaster. Overall, the forecasts from the different HREF configurations appeared 
qualitatively similar on most days.  While there were some differences among the forecasts, a careful 
examination was typically required.   

However, on the first day of the 2018 HWT SFE, there were notable differences in the forecasts 
from the HREF configurations (Fig. 45).  In the 26-hour forecast valid at 0200 UTC on 1 May 2018, the 
forecast from the HREFv2+HRRR (No ARW TL) (Fig. 45, bottom right panel) was rated higher by most 
participants than the HREFv2+HRRR (No NMMB TL) (Fig. 45, bottom middle panel) forecast. The 
HREFv2+HRRR (No ARW TL) better captures the axis of severe hail across central Nebraska within higher 
UH probabilities and also has an extension of low UH probabilities into southwest Kansas, where isolated 
severe hail was reported. 
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Figure 45 Six-panel comparison plot used to conduct the evaluation of the 0000 UTC HREF configurations during the 

2018 HWT SFE.  The 4-h neighborhood UH probability forecasts exceeding 75 m2/s2 valid for 0200 UTC on 1 
May 2018  are shown for the current HREFv2 configuration (top-left panel) , HREFv2+HRRR (top-middle 
panel) , HREFv2+HRRR (No TL)  (top-right panel), HREFv2+HRRR (No HRRR TL) (bottom-left panel), 
HREFv2+HRRR (No NMMB TL) (bottom-middle panel), and HREFv2+HRRR (No ARW TL) (bottom-right panel).  
The observed severe hail reports (green circles) and observed radar-derived maximum estimated size of hail 
(MESH; pink swaths) are overlaid as a reference for subjective verification. 

 
Other representative examples from the 2018 HWT SFE are shown in Figures 46 and 47.  On 2 

May 2018, the forecasts from the HREFv2+HRRR (No TL) (Fig. 46; top-right panel) were subjectively rated 
higher (primarily for higher UH probabilities in southwest Oklahoma) by most participants than forecasts 
from the other HREF configurations.  More typical, however, were the forecasts for 23 May 2018, where 
all HREF configurations generated very similar forecasts of severe wind potential (Fig. 47). 
 
 
 
 
 
 
 
 
 



 50 

 
Figure 46 Same as Fig. 45, except for forecasts valid 0200 UTC on 3 May 2018.  The upside-down red triangles 

represent tornado reports, and the black circles represent significant hail (i.e., ≥ 2” diameter) reports.    

     
Figure 47 Same as Fig. 45, except for 4-h neighborhood probabilities of 10-m wind speeds exceeding 30 kts valid at 

0400 UTC on 24 May 2018.  The blue squares represent severe/damaging wind reports. 
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Overall, the different HREF configurations were rated similarly in terms of providing severe 
weather guidance during the five-week 2018 HWT SFE with mean subjective ratings ranging between 6.1 
to 6.4 (Fig. 48).  In fact, all of the HREF configurations had a median rating of 7 (out of 10), except for the 
HREFv2+HRRR (No NMMB TL) configuration, which had a lower median rating of 6.  Subjectively, there 
was day-to-day variability in the performance of the various HREF configurations with forecasts on most 
days appearing similar enough to not provide a practical difference to a forecaster (i.e., differences not 
large enough to change an outlook).  This result was not necessarily expected for the 10-member 
HREFv2+HRRR configuration compared to the 5-member HREFv2+HRRR (No TL) configuration, but it does 
highlight the resiliency of an ensemble to membership changes. 

 
Figure 48 Box-and-whiskers plot of subjective ratings (1-10) for ensemble neighborhood probabilistic forecasts of 

hourly maximum fields from the HREF configuration experiment during the five-week 2018 HWT SFE.  The 
boxes represent the interquartile range, and the whiskers represent the 10th and 90th percentiles.  The 
crosses represent the median ratings, and the circles represent the mean ratings. 

 
To investigate another perspective of the subjective ratings, the number of times that each HREF 

configuration was given the single-highest rating for a particular forecast was recorded.  This indicated 
when an HWT SFE participant felt that one HREF configuration stood out as the top performer for a 
particular forecast.  For the majority of forecasts, no HREF configuration stood out as the top performer 
(Fig. 49). The HREF configuration without any time-lagged members [HREFv2+HRRR (No TL)] was rated as 
the top performer more often than the other configurations, but it was only for a small percentage (~15%) 
of the forecasts.  On occasions when older runs performed poorly, removing them from the HREF 
improved the probabilistic forecast.  However, for most cases, the time-lagged members did not degrade 
and actually improved the probabilistic ensemble forecast. 
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Figure 49 Pie chart showing the percentage of forecasts for which an HREF configuration received the highest 

subjective rating during the 2018 HWT SFE. 
 

Similarly, the number of times that each HREF configuration was given the single-lowest rating for 
a particular forecast was documented.  It was even more common for none of the HREF configurations to 
stand out as the worst performer, as more than three-fourths of the ratings did not highlight a single 
poorest-performing configuration (Fig. 50).  The HREFv2+HRRR (No NMMB TL) configuration was rated as 
the worst performer more often than any other configuration (i.e., ~9% of the ratings), which is somewhat 
surprising given the perception that NMMB members do not perform as well as the ARW members for 
convective weather forecasting.  The additional spread provided by time-lagged NMMB members 
occasionally contributed to improving the probabilistic severe weather guidance in HREF forecasts (e.g., 
convective initiation southward along a dryline). 

 

 
Figure 50 Same as Fig. 51, except for the percentage of forecasts in which a particular HREF configuration received 

the lowest subjective rating. 
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The main takeaway from the subjective HREF configuration comparison is that the various HREF 
configurations looked very similar overall on most days for severe weather guidance (i.e., the practical 
difference to a forecaster was small).  On some days during the SFE, the time-lagged members did not 
perform as well as more recent convection-allowing model runs, so removing them improved the 
probabilistic ensemble forecast.  Unexpectedly, the time-lagged NMMB members appeared to add more 
value (through increased ensemble diversity/spread) than the time-lagged ARW members during the 2018 
HWT SFE, as the HREFv2+HRRR (No NMMB TL) configuration was rated the lowest overall.   
 For objective verification, surrogate severe fields were generated using the 0000 UTC cycle of six 
HREF configurations, following the procedure outlined by Sobash et al. (2011). Each member’s UH fields 
were regridded to an 80-km grid, with the maximum value over the 1200 UTC – 1159 UTC the following 
day assigned to each gridbox. If a field exceeded a percentile threshold of UH, it was assigned a value of 
one. Finally, a Gaussian smoother was applied to the resulting binary field to generate a probabilistic 
forecast. Member fields were then averaged for each ensemble configuration to generate an ensemble 
surrogate severe field (Sobash et al. 2016). For each configuration, 100 different UH percentile thresholds 
and 53 different s thresholds were tested. 
 To determine what values the UH percentiles corresponded to in each member of the HREF, 
climatologies were first generated for each of the models over the SFE (Fig. 51). The models with the 
NMMB dynamical core (the NAM nest and HRW NMMB members) had overall higher UH than the 
members with the ARW cores. As expected, the 0000 UTC members and 1200 UTC time-lagged members 
had very similar UH climatologies. 

 
Figure 51 Model climatologies of the different members of the 0000 UTC experimental HREF configurations. Dashed 

lines indicate time-lagged members, and the different models are indicated by the different colors. 
 

Once the surrogate severe fields were calculated, they were verified against practically perfect 
fields generated using LSRs, as in the practically perfect fields that were used to subjectively evaluated 
the full period Innovation Desk outlooks. Metrics were calculated over two sets of dates based on the SPC 
0600 UTC Day 1 Convective Outlook: dates with a categorical slight risk or less (n = 15), and dates with a 
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categorical enhanced risk or greater (n = 14). Objective verification metrics considered include the ROC 
area (Mason 1982), FSS, and the reliability term from the Brier Score.  

FSS results from the two different categories showed different behavior depending on the severity 
of the day’s weather (Fig. 52). On the lower-end days (categorical slight risk or less), the 10-member 
ensemble composed of all of the current members of the HREFv2, the HRRR, and a time-lagged version of 
the HRRR performed best of any configuration. The configuration that contained the HRRR but no time-
lagged members (5 total members) performed the worst on these days. Conversely, on the high-end days 
categorized as an enhanced risk or greater, the FSS was highest for the no time-lagged member ensemble 
and lowest for the 8-member original HREFv2. Second-lowest, however, was the full 10-member 
ensemble. These results suggest that the added diversity provided by the time-lagged members helps the 
forecast in more weakly forced environments, but that the time-lagged members may be degrading 
forecast skill for high-end events. These results also show that adding the HRRR benefits the HREF across 
all types of events. Finally, better performance is seen in all configurations for high-end days compared to 
the lower-end days. 
 

Figure 52 FSS contour plots for each potential configuration of the HREF. The best percentile and s combination for 
each ensemble is highlighted by a white x, and the numerical ranking of the scores is by the configuration 
name in the lower right-hand corner of the plot. The left six figures show the FSS for slight risk or less days, 
and the right six figures show the FSS for enhanced risk or greater days.   
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 In order to objectively compare HREF candidate configurations’ performance in their depiction of 
the overall convective evolution, neighborhood maximum ensemble probability (NMEP) forecasts for 
simulated composite reflectivity (hereafter “REFC”) exceeding 40 dBZ were generated for each 
configuration for each day’s 0000 UTC HREF run during the 2018 SFE period. For each HREF run, these 
forecasts were generated hourly between forecast hours 12-30 (hours 31-36 were excluded because one 
member, the HRRR -6h, was not available after 30 hours). The neighborhood was an 80x80 km box 
centered on each grid point, and a Gaussian smoother (σ = 40 km) was applied to the grid point 
probabilities. These probabilistic forecasts were verified against the NSSL Multi-Radar/Multi-Sensor 
(MRMS) national composite reflectivity mosaic (“MergedReflectivityQCComposite”) valid at the closest 
available analysis time (within ±5 minutes of the HREF forecast valid time). Specifically, for MRMS 
reflectivity, binary fields (0 = no, 1 = yes) were generated with respect to 40-dBZ threshold exceedance 
within the same 80x80 km neighborhood used for the HREF forecasts, then smoothed in the same manner. 
These pseudo-NMEP grids are the verification dataset used for the REFC. 
 Frequency biases for REFC were computed for each HREF member as an intermediate step toward 
producing bias-corrected probabilistic forecasts. The biases were calculated over the same set of forecasts 
and forecast times given above, and for each REFC threshold between 35-50 dBZ at an interval of 1 dBZ, 
plus 25 and 30 dBZ. Figure 53 presents a summary of these biases for each member; note that values for 
the time-lagged and non-lagged variants of each CAM configuration are combined here. For a given CAM 
configuration, the lagged and non-lagged biases were qualitatively very similar for all thresholds (not 
shown), indicating that model configuration differences (e.g., model core and microphysics) were 
dominant in controlling frequency bias. 
 

 
Figure 53 Frequency bias vs. REFC threshold for each HREF candidate member over the SFE 2018 dataset. Time-lagged 

members are included with their non-lagged counterparts in this chart (e.g., “HRRR” stats include both the 
lagged and non-lagged HRRR members). Verification domain is the CONUS. 
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At the 40-dBZ threshold, all members were high biased, with biases ranging from 1.50 to 4.12. 
The HRW NMMB member exhibits a far more severe bias than the other members. At REFC values 
approaching 50 dBZ associated with intense convection, the HRW ARW and HRW NSSL members exhibit 
biases nearer unity, while the remaining members remain quite high-biased. Overall, the CAMs 
participating in the candidate HREF configurations were too aggressive in their spatial coverage of REFC 
exceeding all thresholds between 30-50 dBZ, but the HRW NMMB is noteworthy for its anomalously 
severe bias. 
 Two sets of NMEP forecasts were produced for each configuration. In the “uncorrected” NMEPs, 
the 40-dBZ exceedance threshold was used in each member (such that their biases were not accounted 
for). In the “corrected” NMEPs, an exceedance threshold was chosen separately for each member, such 
that the frequency bias was ~1.0 with respect to the 40-dBZ threshold in the MRMS verification dataset. 
The REFC thresholds used for the “corrected” NMEPs ranged from 42.7 dBZ (NAM Nest) to 47.8 dBZ 
(HRW NMMB). 
 Figure 54 presents Brier Skill Score (BSS) for the corrected (solid) and uncorrected (hatched) 
NMEPs. Although the corrected NMEP scores are markedly higher than the uncorrected scores, the 
candidate configurations’ rankings are identical between the two sets of scores. The No NMMB-TL 
configuration performs best, while the No ARW-TL configuration is worst; the current baseline HREFv2 
(which excludes both HRRR members) is second-worst among the six configurations. Fig. 55 presents the 
Fractions Skill Score (FSS) for the same NMEPs. Although the quantitative difference between the 
corrected and uncorrected scores is generally much smaller for FSS, the same ranking seen in Fig. 54 is 
replicated here, except for rankings #5 and #6 switching in the corrected forecasts. Based on the 40-dBZ 
REFC NMEP verification, two inferences can be made about the candidate HREF configurations: (1) the 
HRRR is adding useful information to the baseline HREFv2 configuration; and (2) the NMMB-TL members 
are hurting BSS and FSS scores in configurations where they participate, suggesting whatever spread they 
add to the forecast is not useful enough to offset their relatively poor performance overall for REFC. 
 

 
Figure 54 Brier Skill Score (BSS) for 40-dBZ REFC for HREF candidate configurations over the SFE 2018 dataset; 

corrected (solid) and uncorrected) hatched are given. Verification domain is the CONUS. 
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Figure 55 Fractions Skill Score (FSS) for 40-dBZ REFC NMEPs for HREF candidate configurations over the SFE 2018 

dataset; corrected (solid) and uncorrected) hatched are given. Verification domain is the CONUS. 
 

Fig. 56 presents an attributes diagram for the corrected configuration forecasts; in this case, 
scores are computed over the daily SFE domains, rather than the full CONUS. All configurations 
demonstrate remarkably good reliability after bias correction. The bias-corrected GSD HRRRE NMEPs are 
also included for context, showing considerably poorer reliability (with notably worse resolution for 
probabilities in the 0.2-0.8 range). This corroborates a frequent observation in our subjective evaluations 
from the SFE: that the HRRRE is consistently more under-dispersive in its depiction of convective evolution 
than the HREF (regardless of HREF configuration). 

 

 
Figure 56 Attributes diagram for 40-dBZ REFC NMEPs for HREF configurations, plus GSD HRRRE, over the 2018 SFE 

dataset. Bias-corrected NMEPs are used. Verification domain for each day’s forecast is the daily SFE 
domain. 
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6) HAIL GUIDANCE (credit: I. Jirak) 
 

Several existing and new hail diagnostic fields were examined in the mixed-physics ensemble 
CLUE subset during the 2018 HWT SFE.  The hail diagnostic fields examined as part of the mixed-physics 
ensemble included HAILCAST (Becky Adams-Selin; Adams-Selin et al. 2018), a microphysics-based 
approach (Greg Thompson), hail size estimated based on updraft speed (Nathan Wendt), and a machine-
learning approach (David Gagne, Nathan Snook; Gagne et al. 2017), along with the standard CAM storm-
attribute fields (i.e., UH and updraft speed).  These hail proxy forecasts were evaluated and compared 
daily during the 2018 HWT SFE using the web-based interface shown in Fig. 57. 

 

Figure 57 Six-panel comparison plot used to conduct the evaluation of the hail output variables from the CLUE mixed-
physics ensemble during the 2018 HWT SFE.  The 24-h neighborhood hail probability forecasts exceeding 1 
inch valid for 1 June 2018 are shown for HAILCAST (top-left panel), microphysics-based approach (top-
middle panel), maximum updraft approach (top-right panel), machine-learning technique (bottom-left 
panel), updraft helicity (≥90 m2s-2; bottom-middle panel), and updraft speed (≥20 ms-1, bottom-right panel).  
The observed severe hail reports (≥1 inch; green circles) and significant severe hail reports (≥2 inches; black 
circles) are overlaid as a reference for subjective verification. 

During each afternoon of the 2018 HWT SFE, participants would subjectively rate (on a scale of 1 
to 10) the quality of the different hail-proxy forecasts from the mixed-physics CAM ensemble valid for 
the previous day.  The observed hail reports and MESH values were used as the verification sources to 
help assess the quality of the forecasts.  The distribution of the subjective ratings for these hail proxies 
are shown in Fig. 58. The top-rated hail-proxy forecasts were from the machine-learning method, UH, 
and HAILCAST.  The MAXHAILW and updraft speed subjective ratings followed closely behind with the 
microphysics-based approach having the lowest subjective ratings.  The microphysics-based approach 
was primarily tuned for the Thompson microphysics scheme, so the results from this mixed-physics 
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ensemble (i.e., using other microphysics schemes) were negatively impacted from not being properly 
tuned to each microphysics scheme.  Another notable issue that impacted the updraft-speed based 
estimates/approaches was the use of the HRRR configuration setting in WRF to cap the latent heating 
rate (for operational stability purposes), which limits the updraft strength.   

 

Figure 58 Subjective ratings (scale of 1-10) by participants during the 2018 HWT SFE of the hail proxy forecasts: a) 
HAILCAST – blue, b) microphysics (MP) approach – yellow, c) updraft speed approach (MAXHAILW) – green, 
d) machine-learning (ML) approach, e) updraft helicity (UH) – red, and f) updraft speed – gray.   

 

7) ENSEMBLE SENSITIVITY-BASED SUBSETTING (credit: Brian Ancell) 

A daily evaluation of probabilities from the operational 42-member Texas Tech ensemble against 
those based on 10-member ensemble subsets chosen objectively through the sensitivity-based subsetting 
technique (Ancell 2016) was performed.  Each day, a response function location was chosen collectively 
with HWT participants through a web-based graphical user interface that identified areas of Day 1 severe 
convection within that day's 0000 UTC Texas Tech operational ensemble run.  The Day 1 response function 
area was selected at a forecast hour between 1800 UTC (the 18hr forecast) and 1200 UTC (the 36hr 
forecast) in areas that exhibited high uncertainty over the prior 6hr period.  This response selection 
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process was performed by viewing the full 42-member probabilities of exceeding 25 and 100 m2/s2 2-5km 
UH valid over the 18-36hr forecast period.  Once the response function time and location were chosen, 
the sensitivity of three independent response functions were automatically calculated: 1) maximum 2-
5km UH, 2) number of grid points exceeding 25 m2/s2 2-5km UH, and 3) number of grid points exceeding 
40 dBZ lowest-model-level simulated reflectivity.  The sensitivities of the three response functions (chosen 
on the 4-km nested domain over the Midwest and South Plains) were calculated with respect to 300- and 
500-hPa temperature, winds, and geopotential height, and 700-hPa temperature on the 12-km CONUS 
domain all with respect to the 7-hr forecast state (valid 0700 UTC).   
 The 10 ensemble members from the 0000 UTC run that possessed the smallest sensitivity-
weighted errors (chosen using the sum resulting from the projection of the ensemble differences with the 
analysis onto the ensemble sensitivity field over the greatest 50% of sensitivity magnitudes) were chosen.  
The analysis used to determine the errors was the 1hr forecast ensemble mean (valid at 0700 UTC) from 
the 0600 UTC Texas Tech ensemble initial conditions determined through the DART EAKF data assimilation 
procedure.  The 1hr forecast at 0700 UTC was used in lieu of the analysis valid at 0600 UTC due to 
significant imbalance present after the assimilation procedure.  Probability fields (specifically maximum 
6-hourly 20-mile neighborhood exceedance probabilities of 25 m2/s2 2-5km UH and 40 dBZ simulated 
near-surface reflectivity) of Day 1 convection were generated for the 10-member ensemble subset and 
compared against probabilities from the full ensemble the following day after the severe event occurred.  
Differences between the full and subset probabilities were also calculated and evaluated, and SPC storm 
reports and practically perfect probability fields were generated to serve as the probabilistic "truth" 
against which both the full and subset ensemble probabilities were judged. 
 Figures 59 and 60 show two examples of the subsetting product during the 5-week experiment 
that participants evaluated.  Figure 59 depicts a successful case for convection in southwest Oklahoma on 
May 2.  Probabilities of simulated reflectivity exceeding 40 dBZ from the 10-member subset were 
increased over that of the full ensemble generally by 20-30%, reaching over 50% across a wide area and 
suggesting a higher probability of storms there.  Using the simulated reflectivity coverage response 
function in this case demonstrates how the forecast of the presence of storms can be improved through 
the subsetting technique and its adjusted probability fields.  Numerous storm reports reflected the 
presence of high wind, hail, and tornadoes in the same area, and was unanimously viewed as a success 
on this day by HWT participants.  In contrast, Figure 60 shows a failure case for convection in southeast 
Colorado on May 10.  In this case the UH coverage response function was used in an attempt to better 
predict the extent of rotating thunderstorms.  Subset probabilities were increased beyond the full 
ensemble by around 20%, yet no storm reports were made in this area. 
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Figure 59 Full 42-member and subset 10-member ensemble probability of exceeding 40 dBZ within 20 miles (top row), 

and the difference in full and subset ensemble probabilities as well as storm reports with SPC practically 
perfect total severe probabilities (bottom row) for May 2 (success case).  

 

 
Figure 60 Full 42-member and subset 10-member ensemble probability of exceeding 25 m2/s2 2-5km updraft helicity 

within 20 miles (top row), and the difference in full and subset ensemble probabilities as well as storm 
reports with SPC practically perfect total severe probabilities (bottom row) for May 10 (failure case).  
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Efforts at Texas Tech after the HWT have been focused on understanding the optimal parameters 
for the subsetting technique and the technique's success rate and degree of improvement.  This is because 
over the entire 5-week period of the HWT, participant responses were favorable toward further 
development of the method (results shown in Figure 61).  Three questions were asked of participants 
daily: 1) What is the skill of the ensemble subset relative to the full ensemble inside the response function 
box?  2) What is the skill of the ensemble subset relative to the full ensemble outside the response 
function box?  3) What response function produce the most skillful subset probabilities?  The purpose of 
question #1 was to understand how participants viewed subset probability improvements inside the 
chosen response box, which is the area directly targeted by the subsetting technique.  Question #2 was 
raised to understand whether participants thought areas outside the chosen response area were 
improved by ensemble subset probabilities, which could be achieved if those areas were correlated with 
the severe weather inside the response area (even though the technique does not directly target those 
areas outside the response area for improvement).  Question #3 was aimed to reveal the most useful 
response function toward improving probabilistic skill.  Just over half of all responses indicated 
probabilistic skill was improved within the response box, while only about 19% felt it was degraded.  
Similarly, about 20% of responses reflected a degradation outside the box, although most of the responses 
(just over half) indicated no change in skill there.  UH coverage was viewed as the most beneficial response 
function to produce the adjusted subset probabilities, while maximum UH was perceived as the worst. 
 

 
Figure 61 Ensemble sensitivity-based subsetting survey question results for the entire 5-week period of the 2018 HWT. 
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4. Summary 
 
 The 2018 Spring Forecasting Experiment (SFE2018) was conducted at the NOAA Hazardous Weather 
Testbed from 30 April – 1 June by the SPC and NSSL with participation from forecasters, researchers, model 
developers, university faculty and graduate students from around the world.  The primary theme of SFE2018 was 
to utilize convection-allowing model and ensemble guidance in creating experimental high-temporal resolution 
probabilistic forecasts of severe weather hazards.  Furthermore, this was the third year that a major effort was 
made to closely coordinate CAM-based ensemble configurations into the Community Leveraged Unified Ensemble 
(CLUE).  The CLUE allowed several carefully designed controlled experiments to be conducted that were geared 
towards identifying optimal configuration strategies for CAM-based ensembles.  Additionally, this is the second 
year that a prototype Warn-on-Forecast system has been tested for issuing short-lead-time outlooks. 
 
Several preliminary findings/accomplishments from SFE2018 are listed below:   
 

• Generated high temporal resolution outlooks for individual severe hazards (tornado, hail, wind) using first-
guess guidance from a temporally disaggregated full-period outlook created with calibrated probabilistic 
guidance from a convection-allowing ensemble.  

• Explored methods to include more detailed timing information by issuing potential severe timing (PST) 
areas, which are enclosed areas valid for 4-h periods that highlight the expected timing of severe weather 
occurrence. 

• Examined various convection-allowing ensemble systems within the CLUE using HREFv2 as a baseline. 
o While all of the ensembles provided similar, useful guidance for Day 1 severe weather forecasting, 

the HREFv2 received higher subjective ratings than the other systems, suggesting that HREFv2 is 
a skillful baseline for CAM ensemble forecasts. 

• Tested a prototype Warn-on-Forecast short-term prediction system in real-time for the second year at 
the Innovation Desk and the first year at the Severe Hazards Desk during an afternoon forecasting activity 
with very promising results. 

• Examined real-time, storm-scale FV3 simulations for the second year during SFE2018.   
o Subjective ratings revealed that FV3 reflectivity forecasts were often comparable to operational 

CAMs.   
o Subjectively, none of the PBL schemes in FV3 stood out as performing best.  In comparisons of 

sounding structures between PBL schemes, participants most often noted large differences in 
low-level moisture.   

o In subjective comparisons of FV3 members with Thompson and NSSL microphysics, NSSL 
(Thompson) members most often had the best depiction of reflectivity and UH location 
(reflectivity magnitude), and the two schemes most frequently had similar depictions of storm 
mode.   

o In subjective comparisons between deterministic FV3 configurations, NSSL and CAPS runs 
performed best and GFDL runs performed worst, while HRRRv3 runs performed better than all 
the FV3 configurations. 

o These results support continued research to refine and improve FV3 for storm-scale applications 
before it is implemented operationally as part of an emerging unified NOAA model production 
suite.   
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• Evaluated an ensemble sensitivity-based subsetting technique.  Subjectively, most frequently the 
ensemble subset had greater or equal forecast skill relatively to the full ensemble.  Updraft helicity 
coverage was viewed as the most beneficial response function to produce the ensemble subset 
probabilities.   

• Examined six candidate HREFv2.1 configurations that added extended HRRR runs and/or removed some 
of all of the time-lagged members.  The various HREF configurations looked very similar overall on most 
days for severe weather guidance. In objective analyses, adding the HRRR was beneficial across a range 
of severe weather events. 

• Several different hail size forecasting methods were examined.  In subjective evaluations, the top-rated 
hail-proxy forecasts were from the machine learning method, UH, and HAILCAST.   

 
 Overall, SFE2018 was successful in testing new forecast products and modeling systems to address 
relevant issues related to the prediction of hazardous convective weather.  The findings and questions 
generated during SFE2018 directly promote continued progress to improve forecasting of severe weather in 
support of the NWS Weather-Ready Nation initiative. 
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APPENDIX A 
 
Table A1 Daily activities schedule in local (CDT) time 
 

Severe Hazards Desk Innovation Desk 
0800 – 0845:  Evaluation of Experimental Forecasts & Guidance 

Subjective rating relative to radar evolution/characteristics, warnings, preliminary reports, and 
MRMS MESH and rotation tracks 
• Day 1 full-period probabilistic forecasts of 

tornado, wind, and hail 
• Day 1 4-h period forecasts and guidance for 

tornado, wind, and hail 

• Days 1 full-period probabilistic forecast of 
total severe 

• Day 1 4-h areas for severe weather timing 
• Day 1 1-h total severe outlooks 

0845 – 0915:  Map Analysis 
Hand analysis of 12Z upper-air and surface maps, discussion, and domain selection (from two 
areas) 
 

0915 – 1130:  Convective Outlook Generation 
• Day 1 full-period probabilistic forecasts of 

tornado, wind, and hail valid 16-12Z over 
mesoscale area of interest 

• Day 1 4-h probabilistic forecasts of tornado, 
wind, and hail valid 17-21Z and 21-01Z 
using CLUE subsets* 

• Day 1 full-period probabilistic forecast of 
total severe valid 16-12Z over mesoscale 
area of interest 

• Day 1 4-h timing areas (16-12Z) for full-
period total severe ≥15% using CLUE 
subsets* 

1130 – 1200:  Map Discussion 
Brief discussion of today’s forecast challenges and products 
Topic of the day:  3D Vis, Met Office, FV3, NEWS-e, CAM scorecard 
 

1200 – 1300:  Lunch 
 

1300 – 1345:  Convective Outlook Generation 
• Day 1 4-h probabilistic forecasts of tornado, 

wind, and hail valid 19-23Z using 12Z 
CAM ensembles* 

• Update Day 1 4-h timing areas (19-12Z) for 
full-period total severe ≥15% using 12Z 
CAM ensembles* 
 

1345 – 1500: Scientific Evaluations  
• HREF Configurations 
• CLUE:  HRRRE 
• Hail Guidance 
• Deterministic CAMs (FV3, UM, HRRR) 
• TTU Sensitivity-Based Ensemble 

Subsetting 

• CLUE: Physics Experiment 
• CLUE: FV3 Physics 
• Met Office UM Evaluation 
• CLUE: Microphysics 
• Ensemble Object-Based Visualization 

1500 – 1600:  Short-term Outlook Update 
• Update 4-h probabilistic forecasts of 

tornado, wind, and hail valid 21-01Z using 
SPC Short-Term Hazard Guidance and 
NEWS-e* 

• Utilize NEWS-e to generate preliminary 
and final hourly probabilistic forecasts of 
total severe valid 21-22, 22-23, and 23-
00Z* 

* Denotes forecasts also made by participants using the web drawing tool on Chromebooks. 
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Table A2 Weekly participants during SFE2018. Facilitators/leaders for SFE2018 included: Adam Clark (NSSL), Kent 
Knopfmeier (CIMMS/NSSL), Israel Jirak (SPC), Jack Hales (retired SPC), Andy Dean (SPC), Jessica Choate 
(CIMMS/NSSL), Steve Willington (UKMO), Burkely Gallo (OU/NSSL), and MacKenzie Krojac (OU/NSSL). 

Week 1 Week 2 Week 3 Week 4 Week 5 
April 30-May 4 May 7-11 May 14-18 May 21-25 May 29-June 1 

Eric Loken (OU) 
Nate Snook 
(OU/CAPS) 

Steve Willington (Met 
Office) 

Steve Willington 
(Met Office) 

Steve Willington (Met 
Office) 

Christina Kalb (DTC) Brad Grant (WDTD) 
Sarah Bull (Met 
Office) 

Sarah Bull (Met 
Office) Sarah Bull (Met Office) 

Brian Ancell (TTU) 
Shannon Rees 
(GFDL) 

Michael Lewis (Met 
Office) 

Michael Lewis (Met 
Office) 

Michael Lewis (Met 
Office) 

Aaron Hill (TTU) 
Andy Hazelton 
(GFDL) Jason Otkin (CIMSS) 

Harald Richter 
(BoM) Justin Gibbs (WDTD) 

Victor Gensini (NIU) Bill Gallus (ISU) 
Greg Thompson 
(NCAR) 

Lance Bosart 
(SUNYA) Tara Jensen (DTC) 

Jamie Wolff (DTC) 
Bill Gallus student 
(ISU) Amanda Burke (OU) 

Massey Bartolini 
(SUNYA) Clark Evans (UWM) 

Terra Ladwig (GSD) 
Ryan Sobash 
(NCAR) Brian Ancell (TTU) 

Marshall Pfahler 
(SUNYA) David Nevius (UWM) 

Dave Turner (GSD) Brian Ancell (TTU) 
Austin Coleman 
(TTU) 

Craig Schwartz 
(NCAR; M-W) Austin Coleman (TTU) 

Tracy Dorian (EMC) Aaron Hill (TTU) 
Brian Kolts 
(FirstEnergy) 

Glen Romine ? 
(NCAR) Pete Wolf (NWS JAX) 

Scott Rentschler 
(557WW) Eric James (GSD) 

Becky Adams-Selin 
(AER) 

Austin Coleman 
(TTU) Jeff Beck (DTC/GSD) 

Dan Leins (NWS 
TWC) Trevor Alcott (GSD) John Brown (GSD) Ed Szoke (GSD) Michelle Harrold (DTC) 

Austin Harris (WDTD) Alicia Bentley (EMC) Jeff Duda (GSD) 
Curtis Alexander 
(GSD) Isidora Jankov (GSD) ? 

Brittany Peterson 
(NWS FGF) Geoff Manikin (EMC) Eric Aligo (EMC) 

Logan Dawson 
(EMC) Ed Strobach (EMC) 

Michael Strickler 
(NWS RAH) 

Robert Hart (NWS 
CRP) 

Glen Romine 
(NCAR) Ben Blake (EMC) 

Hugh Morrison (NCAR, 
T-W) 

Dave Imy (retired 
SPC) 

Darren Van Cleave 
(NWS SLC) 

Jaret Rogers (NWS 
PSR) 

Andy Hatzos (NWS 
ILN) 

Matthew Jackson 
(NWS TFX) 

Colby Neuman (NWS 
PQR) John Allen (CMU) 

Matthew Friedlein 
(NWS LOT) 

Keith Sherburn 
(NWS UNR) 

Jeff Milne 
(OU/CIMMS/SPC) 

Caleb Grunzke 
(CIMMS/SPC) 

John Gagan (NWS 
MKX) 

Jason Davis (NWS 
BMX) 

Brian Squitieri 
(SPC) Ryan Solomon (AWC) 

 
Mike Evans (WFO 
ALY) 

Brendon Ruben-
Oster (WPC)   

 Nathan Wendt (SPC)    
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