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1.	Introduction	

The	 2016	 Spring	 Forecasting	 Experiment	 (SFE2016)	 was	 conducted	 from	 2	 May	 –	 3	 June	 by	 the	
Experimental	Forecast	Program	(EFP)	of	the	NOAA/Hazardous	Weather	Testbed	(HWT).	SFE2016	was	co-led	by	
the	 Storm	 Prediction	 Center	 (SPC)	 and	 National	 Severe	 Storms	 Laboratory	 (NSSL).	 	 In	 addition,	 important	
contributions	 of	 convection-allowing	models	 (CAMs)	 were	made	 from	 collaborators	 including	 the	 Center	 for	
Analysis	 and	 Prediction	 of	 Storms	 (CAPS)	 at	 the	 University	 of	 Oklahoma,	 Earth	 Systems	 Research	
Laboratory/Global	 Systems	 Division	 (ESRL/GSD),	 University	 of	 North	 Dakota	 (UND),	 United	 Kingdom	
Meteorological	 Office	 (UK	 Met	 Office),	 National	 Center	 for	 Atmospheric	 Research	 (NCAR),	 and	 NCEP’s	
Environmental	Modeling	Center	(EMC).		Participants	included	more	than	80	forecasters,	researchers,	and	model	
developers	 from	 around	 the	 world	 (see	 Table	 1	 in	 Appendix).	 	 As	 in	 previous	 years,	 SFE2016	 aimed	 to	 test	
emerging	concepts	and	technologies	designed	to	improve	the	prediction	of	hazardous	convective	weather,	with	
several	primary	goals	consistent	with	the	Forecasting	a	Continuum	of	Environmental	Threats	(FACETs;	Rothfusz	
et	al.	2014)	and	Warn-on	Forecast	(WoF;	Stensrud	et	al.	2009)	visions:	

Operational	Product	and	Service	Improvements:	
• Explore	the	ability	to	generate	higher	temporal	resolution	Day	1	convective	outlooks	than	those	issued	

operationally	by	SPC.	
o 4-h	periods	for	individual	severe	hazards	(tornado,	hail,	and	wind),	and	all	hazards	combined	
o Isochrones	were	used	to	delineate	the	start-time	of	4-h	time	windows	with	the	highest	total	

severe	probabilities	
• Generate	experimental	Day	2	convective	outlooks	containing	probabilistic	forecasts	for	individual	

hazards	(tornado,	hail,	wind),	to	provide	more	specific	threat	information	compared	to	current	
operational	SPC	Day	2	total	severe	storm	outlooks.	
	

Applied	Science	Activities:	
• Compare	various	convection-allowing	ensembles	to	identify	strengths	and	weaknesses	of	different	

configuration	strategies	using	the	framework	of	the	Community	Leveraged	Unified	Ensemble	(CLUE).			
o Compare	the	skill	of	ARW-based,	NMMB-based,	and	multi-core	ensembles.	
o Examine	the	impact	of	radar	data	assimilation	using	two	similarly	configured	ensembles	with	

and	without	radar	data	assimilation.			
o Assess	the	impact	of	ensemble	size	using	three	similarly	configured	multi-core	ensembles	(i.e.,	

equal	membership	between	WRF-ARW	and	NMMB)	comprised	of	6,	10,	and	20	members.	
o Document	characteristics	of	various	microphysics	schemes	used	with	the	WRF	model.	
o Compare	CLUE	subsets	to	the	Storm	Scale	Ensemble	of	Opportunity	(SSEO)	as	a	baseline.			

• Utilize	convection-allowing	ensemble	forecasts	in	generating	convective	outlooks	for	Day	2,	including	
individual	severe	hazards.	

• Compare	and	assess	different	approaches	in	CAMs	for	predicting	hail	size.	
• Provide	an	assessment	of	the	capability	of	the	NCAR	global	Model	for	Prediction	Across	Scales	(MPAS)	

with	 variable	 resolution	 (3	 km	grid-spacing	over	 the	CONUS)	 in	 generating	 realistic	 and	operationally	
useful	prediction	of	convective	storms	out	to	Day	5.	

• Evaluate	 and	 compare	 forecasts	 from	 the	 NAM	 Rapid	 Refresh	 (NAMRR;	 an	 experimental,	 rapidly	
updating	 NCEP	model),	 and	 the	 operational	 and	 development	 versions	 of	 the	 High	 Resolution	 Rapid	
Refresh	(HRRR)	model.	

• Explore	the	use	and	application	of	ensemble	sensitivity	analyses	in	a	CAM	ensemble.	



As	 in	previous	experiments,	a	suite	of	state-of-the-art	experimental	CAM	guidance	contributed	by	our	
large	group	of	collaborators	was	central	to	SFE2016.		However,	this	year	a	major	effort	was	made	to	coordinate	
CAM-based	 ensemble	 configurations	much	more	 closely	 than	 in	 previous	 years.	 	 Specifically,	 instead	 of	 each	
group	providing	a	separate,	independently	designed	CAM-based	ensemble,	all	groups	agreed	on	a	set	of	model	
specifications	(e.g.,	grid-spacing,	vertical	levels,	domain	size,	physics)	so	that	the	simulations	contributed	by	each	
group	 could	 be	 used	 in	 carefully	 designed	 controlled	 experiments.	 This	 design	 allowed	 us	 to	 conduct	 several	
experiments	 geared	 toward	 identifying	 optimal	 configuration	 strategies	 for	 CAM-based	 ensembles,	 and	 was	
especially	well	timed	to	help	inform	the	design	of	the	first	operational	CAM-based	ensemble	for	the	US,	which	is	
planned	for	implementation	by	NOAA’s	NCEP/EMC	in	the	upcoming	years.		This	large	number	of	CAM	members	
has	been	termed	the	Community	Leveraged	Unified	Ensemble,	or	CLUE,	and	 included	65	members	using	3-km	
grid-spacing	that	allowed	for	a	set	of	eight	unique	experiments.	 	

This	 document	 summarizes	 the	 activities,	 core	 interests,	 and	 preliminary	 findings	 of	 SFE2016.	 	More	
detailed	 information	 on	 the	 organizational	 structure	 and	 mission	 of	 the	 HWT,	 model	 and	 ensemble	
configurations,	and	 information	on	various	 forecast	 tools	and	diagnostics	can	be	 found	 in	 the	operations	plan	
(http://hwt.nssl.noaa.gov/Spring_2016/HWT_SFE2016_operations_plan_final.pdf).	 	 The	 remainder	 of	 this	
document	 is	 organized	 as	 follows:	 Section	 2	 provides	 an	 overview	 of	 the	 models	 and	 ensembles	 examined	
during	 SFE2016	 along	with	 a	 description	 of	 the	 daily	 activities,	 Section	 3	 reviews	 the	 preliminary	 findings	 of	
SFE2016,	and	Section	4	contains	a	summary	of	the	preliminary	findings.	

	
2.		Description	

a)		Experimental	Models	and	Ensembles	

	 Building	 upon	 successful	 experiments	 of	 previous	 years,	 SFE2016	 focused	 on	 the	 generation	 of	
experimental	probabilistic	forecasts	of	severe	weather	valid	over	shorter	time	periods	than	current	operational	
SPC	 severe	 weather	 outlooks.	 	 This	 is	 an	 important	 step	 toward	 addressing	 a	 strategy	 within	 the	 National	
Weather	Service	(NWS)	of	providing	nearly	continuous	probabilistic	hazard	forecasts	on	increasingly	fine	spatial	
and	 temporal	 scales	 (i.e.,	 FACETs),	 in	 support	 of	 the	 NWS	 Weather-Ready	 Nation	 initiative.	 	 As	 in	 previous	
experiments,	a	suite	of	new	and	improved	experimental	CAM	guidance	including	ensembles	was	central	to	the	
generation	of	these	forecasts.	For	all	of	the	models,	hourly	maximum	fields	(HMFs)	of	explicit	storm	attributes	
such	as	simulated	reflectivity,	updraft	helicity,	updraft	speed,	and	10-m	wind	speed,	were	examined	as	part	of	
the	experimental	 forecast	and	evaluation	process.	 	About	90	unique	CAMs	were	run	for	SFE2016,	of	which	65	
were	a	part	of	the	CLUE	system.		Other	deterministic	and	ensemble	CAMs	outside	of	the	CLUE	were	contributed	
by	NSSL,	GSD,	SPC,	and	the	UK	Met	Office.		To	put	the	number	of	CAMs	run	for	SFE2016	into	context,	Figure	1	
shows	 the	 number	 of	 CAMs	 run	 for	 SFEs	 since	 2007.	 	 There	 is	 a	 clear	 increasing	 trend,	 but	 consolidation	 of	
members	contributed	by	various	agencies	into	the	CLUE	made	the	increase	in	members	more	manageable.			



	

Figure	1	Number	of	CAMs	run	for	SFEs	since	2007.		The	different	colored	stacked	bars	indicate	the	contributing	
agencies.		In	SFE2016,	the	bar	corresponding	to	the	CLUE	is	marked	by	text.	

More	information	on	all	the	modeling	systems	run	for	SFE2016	is	given	below.			

	 1)	THE	COMMUNITY	LEVERAGED	UNIFIED	ENSEMBLE	(CLUE)	

	 The	CLUE	 is	a	carefully	designed	ensemble	with	subsets	of	members	contributed	by	NSSL,	CAPS,	UND,	
ESRL/GSD,	and	NCAR.	 	 In	addition,	EMC	staff	provided	guidance	on	the	NMMB	configuration	run	by	CAPS	and	
NSSL,	and	the	Developmental	Testbed	Center	(DTC)	provided	support	for	post-processing.		To	ensure	consistent	
post-processing,	visualization,	and	verification,	all	CLUE	contributors	used	the	same	post-processing	software	to	
output	the	same	set	of	model	output	fields	on	the	same	grid.		The	post-processed	model	output	fields	are	the	
same	as	the	2D	fields	output	by	the	operational	HRRR	and	were	chosen	because	of	their	relevance	to	a	broad	
range	 of	 forecasting	 needs,	 including	 aviation,	 severe	 weather,	 and	 precipitation.	 	 A	 small	 set	 of	 additional	
output	fields	requested	by	NCEP	Centers,	Weather	Prediction	Center	(WPC),	SPC,	and	Aviation	Weather	Center	
(AWC),	were	also	 included.	 	All	CLUE	members	were	 initialized	weekdays	at	0000	UTC	with	3-km	grid-spacing	
covering	 a	 CONUS	 domain.	 	 The	 ARW	 and	 NMMB	 members	 have	 matching	 horizontal	 and	 vertical	 grid	
specifications.	 	 A	 full	 description	 of	 all	 members	 and	 list	 of	 post-processed	model	 fields	 are	 provided	 in	 the	
SFE2016	operations	plan	(Clark	et	al.	2016).		Table	1	provides	a	summary	of	each	CLUE	subset.			
	 During	the	first	week	of	the	experiment	it	was	discovered	that	the	caps-nmmb	runs	contained	a	bug	that	
caused	 a	 very	 severe	 warm	 and	 dry	 bias	 in	 the	 near	 surface	 fields.	 	 It	 was	 found	 that	 the	 runs	 were	 being	
configured	 to	 ingest	 the	 International	Geosphere-Biosphere	Programme	(IGBP)	 land	surface	parameter	 tables,	
but	were	 reading	 in	data	 from	 the	United	 States	Geological	 Table	 (USGS)	 tables.	 	During	 the	 second	week	of	
SFE2016	this	bug	was	fixed	by	having	one	of	the	participating	EMC	scientists,	Jacob	Carley,	work	with	CAPS	staff.		
The	bug	affected	a	total	of	7	days,	but	since	the	conclusion	of	the	experiment,	all	the	affected	runs	have	been	
rerun	by	NSSL.		Figure	2	illustrates	a	forecast	of	10-m	dewpoint	that	contained	the	bug,	and	the	same	forecast	
after	the	bug	fix	was	implemented.			



Table	1	Summary	of	CLUE	subsets.		IC/LBC	perturbations	labeled	“SREF”	indicate	that	IC	perturbations	were	extracted	from	
members	of	NCEP’s	Short-Range	Ensemble	Forecast	system	and	added	to	0000	UTC	NAM	analyses.		In	subsets	with	
“yes”	 indicated	 for	 mixed-physics,	 the	 microphysics	 and	 turbulence	 parameterizations	 were	 varied,	 except	 for	
subset	mp,	which	only	varied	the	microphysics.		Note,	the	control	member	of	the	core	ensemble	was	also	used	as	
the	control	member	in	the	mp	and	s-phys-rad	ensembles.		Thus,	although	the	total	number	of	members	adds	to	67,	
there	were	 65	 unique	members.	 	 Further,	 one	member	 planned	 for	 the	 core	 subset	was	 not	 ready	 for	 real-time	
implementation,	thus	only	9	core	members	were	actually	run.				

Clue	Subset	 #	of	
mems	

IC/LBC	
perturbations	

Mixed	
Physics	

Data	
Assimilation	

Model	Core	 Agency	

core	 10	(9)	 SREF	 yes	 ARPS-3DVAR	 ARW	 CAPS	
s-phys-rad	 10	 SREF	 no	 ARPS-3DVAR	 ARW	 CAPS	
caps-enkf	 9	 EnKF	(CAPS)	 yes	 EnKF	(CAPS)	 ARW	 CAPS	
caps-nmmb-rad	 1	 none	 no	 ARPS-3DVAR	 NMMB	 CAPS	
caps-nmmb	 5	 SREF	 no	 cold	start	 NMMB	 CAPS	
s-phys-norad	 10	 SREF	 no	 cold	start	 ARW	 NSSL	
nssl-nmmb	 5	 SREF	 no	 cold	start	 NMMB	 NSSL	
HRRR36	 1	 no	 no	 RAP-GSI/DFI	 ARW	 ESRL/GSD	
ncar-enkf	 10	 EnKF	(DART)	 no	 EnKF	(DART)	 ARW	 NCAR	
mp	 5	 no	 yes	 ARPS-3DVAR	 ARW	 UND	
	
The	design	of	CLUE	allowed	for	8	unique	experiments	that	examined	issues	immediately	relevant	to	the	design	
of	a	NCEP/EMC	operational	CAM-based	ensemble.		These	experiments	are	listed	in	Table	2.			

Table	2	List	of	CLUE	experiments	for	SFE2016.		Note,	the	GSD	Radar	vs.	CAPS	Radar	Assimilation	experiment	(marked	with	*)	
was	planned	but	not	conducted	because	the	core	member	that	was	going	to	be	used	was	not	ready	for	real-time	
implementation.	

Experiment	
Name	

Description	 CLUE	subsets	

ARW	vs.	NMMB	 A	 direct	 comparison	 of	 subjective	 and	 objective	 skill	 of	 ARW	 and	 NMMB	
cores	was	conducted.			

caps-nmmb,	
nssl-nmmb,	&	
s-phys-norad	

Multi-core	vs.	Single	
core	

Three	ensembles	were	compared	 to	 test	 the	effectiveness	of	a	 single	core	
vs.	multi-core	configuration.	The	 first	ensemble	used	5	ARW	and	5	NMMB	
members,	the	second	10	ARW	members,	and	the	third	10	NMMB	members.	

caps-nmmb,	
nssl-nmmb,	&	
s-phys-norad	

Single	Physics	vs.	
Multi-physics	

An	ensemble	with	perturbed	ICs/LBCs	was	used	to	test	whether	there	was	a	
noticeable	 advantage	 when	 using	 multiple	 PBL	 and	 microphysics	
parameterizations	vs.	common	physics	in	all	members.	

core,	s-phys-
rad	

Ensemble	radar	vs.	
Ensemble	No	Radar	

A	 single	 physics	 ensemble	 was	 used	 to	 test	 the	 influence	 of	 assimilating	
radar	data.		In	particular,	the	longest	forecast	length	at	which	the	radar	data	
had	a	noticeable	influence	was	assessed.	

s-phys-rad,	s-
phys-norad	

3DVAR	vs.	EnKF	 The	3DVAR	and	EnKF	data	assimilation	approaches	were	compared.	 	Note,	
this	 experiment	 was	 not	 as	 controlled	 as	 the	 others	 because	 there	 were	
other	 different	 aspects	 of	 the	 configurations	 in	 the	 subsets	with	 different	
data	assimilation.	

core,	caps-
enkf,	ncar-enkf	

*GSD	Radar	vs.	CAPS	
Radar	Assimilation	

Two	methods	for	assimilating	radar	data	were	compared.	 	One	used	ARPS-
3DVAR	and	the	other	the	DDFI	system	used	in	the	HRRR.	

core,	HRRR36	

Microphysics	
Sensitivities	

The	 impact	 of	 different	 microphysical	 parameterizations	 on	 the	 resulting	
convective	storm	forecasts	was	examined.	

mp	

Ensemble	Size	
Experiment	

A	 comparison	 of	 ensembles	 with	 equal	 contributions	 of	 NMMB	 and	 ARW	
members	 using	 6,	 10,	 and	 20	 members	 was	 conducted	 to	 examine	 the	
impact	of	ensemble	size.			

caps-nmmb,	s-
phys-norad,	
nssl-nmmb	



	

Figure	2	10-m	AGL	dewpoint	temperatures	at	21	h	forecast	lead	time	from	a	0000	UTC	9	May,	2016	initialization	
of	one	of	the	caps-nmmb	members	(a)	with	the	land	surface	bug,	(b)	without	the	land	surface	bug,	and	
(c)	the	difference	between	them.	

	

	 2)	THE	STORM	SCALE	ENSEMBLE	OF	OPPORTUNITY	(SSEO)	

	 The	 SPC	 Storm-Scale	 Ensemble	 of	 Opportunity	 (SSEO)	 is	 a	 7-member,	 multi-model	 and	multi-physics	
convection-allowing	ensemble	consisting	of	deterministic	CAMs	with	~4-km	grid	spacing	available	to	SPC	year-
round.		This	“poor	man’s	ensemble”	has	been	utilized	in	SPC	operations	since	2011	with	forecasts	to	36	h	from	
0000	and	1200	UTC	and	provides	a	practical	 alternative	 to	a	 formal/operational	 storm-scale	ensemble,	which	
has	not	been	available	operationally,	owing	to	computational	limitations	in	NOAA.			All	members	were	initialized	
as	 a	 “cold	 start”	 from	 the	 operational	 NAM	 or	 the	 RAP	 –	 i.e.,	 no	 additional	 data	 assimilation	 was	 used	 to	
produce	ICs.	

	



	 3)	THE	NSSL-WRF	AND	NSSL-WRF	ENSEMBLE	

 SPC	forecasters	have	used	output	from	an	experimental	4-km	grid-spacing	WRF-ARW	produced	by	NSSL	
(hereafter	NSSL-WRF)	since	the	fall	of	2006.	Currently,	this	WRF	model	is	run	twice	daily	at	0000	UTC	and	1200	
UTC	throughout	the	year	over	a	full-CONUS	domain	with	forecasts	to	36	hours.						
					 For	 the	 third	 year,	 the	 NSSL-WRF	 ensemble	 was	 part	 of	 the	 experimental	 numerical	 guidance.	 This	
ensemble	 includes	 eight	 additional	 4-km	 WRF-ARW	 runs	 that	 –	 along	 with	 the	 deterministic	 NSSL-WRF	 –	
comprised	a	nine-member	NSSL-WRF-based	ensemble.	 The	additional	 eight	members	were	 initialized	at	0000	
UTC	 and	use	 3-h	 forecasts	 from	 the	 2100	UTC	NCEP	 Short	 Range	 Ensemble	 Forecast	 (SREF)	 system	 for	 initial	
conditions	 (ICs)	 and	 corresponding	 SREF	member	 forecasts	 as	 lateral	 boundary	 conditions	 (LBCs).	 The	physics	
parameterizations	for	each	member	are	identical	to	the	deterministic	NSSL-WRF.	Although	the	unvaried	physics	
will	have	lower	spread	than	a	multi-physics	ensemble,	SPC	forecasters	and	NSSL	scientists	are	very	familiar	with	
the	behavior	of	the	NSSL-WRF	physics,	and	this	configuration	will	allow	for	the	isolation	of	spread	contributed	
only	by	varying	the	ICs/LBCs.	

	 4)	UKMET	CONVECTION-ALLOWING	MODEL	RUNS	

Three	nested,	limited-area	high-resolution	versions	of	the	Met	Office	Unified	Model	(UM)	running	once	
per	 day	were	 provided	 to	 SFE2016:	 two	 at	 2.2	 km	 grid	 spacing	 and	 one	 at	 1.1	 km.	 	 The	 operational	 2.2-km	
version	 had	 70	 vertical	 levels	 across	 a	 slightly	 sub-CONUS	 domain.	 Taking	 its	 initial	 and	 lateral	 boundary	
conditions	from	the	00Z	17-km	horizontal	grid-spacing	global	configuration	of	the	UM,	the	2.2-km	model	was	
initialized	without	additional	data	assimilation	and	ran	out	to	48	hours.	This	model	configuration	included	a	3D	
turbulent	mixing	 scheme	using	a	 locally	 scale-dependent	blending	of	Smagorinsky	and	boundary	 layer	mixing	
schemes.	Stochastic	perturbations	were	made	to	the	low-level	resolved-scale	temperature	field	in	conditionally	
unstable	regimes	(to	encourage	the	transition	from	subgrid	to	resolved	scale	flows)	and	the	microphysics	was	
single	moment.		Partial	cloudiness	was	diagnosed	assuming	a	triangular	moisture	distribution	with	a	width	that	
is	a	universally	specified	function	of	height	only.	A	parallel	version	of	the	2.2-km	model	was	also	run	with	a	new	
scheme	that	addresses	the	moisture	conservations	issues	in	the	model.		The	1.1	km	run	was	nested	within	the	
2.2-km	 run	 with	 a	 slightly	 smaller	 domain	 centered	 over	 eastern	 Oklahoma.	 	 All	 UM	 simulations	 were	 run	
without	convective	parameterization.			

	 5)	NCAR	MODEL	FOR	PREDICTION	ACROSS	SCALES	(MPAS)	

NCAR’S	Model	for	Prediction	Across	Scales	(MPAS;	Skamarock	et	al.	2012)	was	examined	for	the	second	
year	during	SFE2016.		MPAS	produced	daily	0000	UTC	initialized	forecasts	at	3-km	grid-spacing	over	the	CONUS	
with	 forecasts	 to	 120	 h	 (5	 days).	 	 The	 MPAS	 horizontal	 mesh	 was	 based	 on	 Spherical	 Centriodal	 Voronoi	
Tesselations	 (SCVTs).	 These	 meshes	 allowed	 for	 both	 quasi-uniform	 discretization	 of	 the	 sphere	 and	 local	
refinement	 with	 smoothly	 varying	 mesh	 spacing	 between	 regions	 with	 differing	 resolutions.	 	 The	 smoothly	
varying	 mesh	 eliminates	 the	 major	 problems	 encountered	 with	 mesh	 transitions	 in	 forecast	 systems	 using	
traditional	grid-nesting.		

	
6)	NORTH	AMERICAN	MESOSCALE	RAPID	REFRESH	(NAMRR)	SYSTEM	

The	 NCEP	 experimental	 North	 American	 Mesoscale	 Rapid	 Refresh	 system	 (NAMRR)	 is	 an	 hourly-
updated	version	of	the	North	American	Mesoscale	(NAM)	forecast	system	and	its	data	assimilation	system	that	
assimilates	radar	data	using	the	ESRL	Diabatic	Digital	Filter	Initialization	(DDFI)	technique.		All	NAMRR	forecasts	



were	at	least	18	h,	and	to	maintain	compatibility	with	the	operational	NAM,	60	h	nested	and	84	h	large	domain	
forecasts	were	issued	at	0000,	0600,	1200,	and	1800	UTC.		The	NAMRR	was	used	during	the	SFE2016	forecast	
process	and	a	formal	evaluation	activity	was	conducted	comparing	the	NAMRR	to	the	HRRR.			

	

b)	Daily	Activities	

	 SFE2016	activities	were	focused	on	forecasting	severe	convective	weather	at	two	separate	desks,	one	
forecasting	 individual	 hazards	 and	 the	 other	 forecasting	 total	 severe,	 with	 different	 experimental	 forecast	
products	 being	 generated	 at	 different	 temporal	 resolutions.	 	 Forecast	 and	 model	 evaluations	 also	 were	 an	
integral	part	of	daily	activities	during	SFE2016.		A	summary	of	forecast	products	and	evaluation	activities	can	be	
found	below	while	a	detailed	schedule	of	daily	activities	is	contained	in	the	appendix.	

	 1)	EXPERIMENTAL	FORECAST	PRODUCTS	

Similar	to	previous	years,	the	experimental	forecasts	continued	to	explore	the	ability	to	add	temporal	
specificity	 to	 longer-term	 convective	 outlooks.	 One	 desk	 mimicked	 the	 SPC	 operational	 Day	 1	 convective	
outlooks	 by	 producing	 separate	 probability	 forecasts	 of	 large	 hail,	 damaging	wind,	 and	 tornadoes	within	 25	
miles	(40	km)	of	a	point	valid	1600	UTC	to	1200	UTC	the	next	day.		On	the	other	desk,	a	separate	Day	1	forecast	
was	made	for	total	severe	(combined	hail,	wind,	and	tornado)	probabilities	valid	over	the	same	period.		

	Each	desk	then	manually	stratified	their	respective	Day	1	forecasts	 into	periods	with	higher	temporal	
resolution.	Individual	hazard	probability	forecasts	of	large	hail,	damaging	wind,	and	tornadoes	were	generated	
for	two	four-hour	periods:	1800-2200	UTC	and	2200-0200	UTC.		As	an	alternative	way	of	stratifying	the	Day	1	
forecast,	 the	other	desk	generated	five	4-h	period	outlooks	of	total	severe	at	two-hour	 intervals	covering	the	
time	periods:	1800-2200,	2000-0000,	2200-0200,	0000-0400,	and	0200-0600	UTC.		Additionally,	the	total	severe	
desk	 drew	 isochrones	 of	 severe	 weather	 at	 two-hour	 intervals	 on	 top	 of	 the	 full	 period	 Day	 1	 total	 severe	
probabilities	to	delineate	the	start-time	of	the	4-h	time	window	with	the	highest	total	severe	probabilities.		The	
4-h	time	windows	were	chosen	based	on	research	finding	that	a	strong	majority	(97%)	of	storm	reports	within	
40-km	of	a	point	fall	within	a	4-h	period.		Another	way	to	think	of	this	is	that,	when	SPC	issues	their	first	Day	1	
convective	outlook	that	is	valid	for	a	24-h	period,	one	can	expect	that	almost	all	the	severe	weather	potential	
will	be	confined	to	a	much	shorter	 time	period	(i.e.	4-h).	 	Thus,	 if	 these	time	periods	with	the	highest	severe	
weather	risk	can	be	accurately	delineated,	it	would	provide	very	useful	information	to	supplement	the	regular	
Day	 1	 convective	 outlooks.	 	 The	 isochrones	 were	 tested	 as	 an	 alternative	 (or	 supplement)	 to	 issuing	 more	
frequent	outlooks	valid	for	shorter	time	periods.		The	goals	of	testing	these	different	approaches	is	to	explore	
multiple	 ways	 of	 introducing	 probabilistic	 severe	 weather	 forecasts	 on	 time/space	 scales	 that	 are	 currently	
addressed	 with	 mostly	 categorical	 forecast	 products	 (i.e.,	 SPC	 Mesoscale	 Discussions	 and	 Tornado/Severe	
Thunderstorm	 Watches),	 and	 to	 begin	 to	 explore	 ways	 of	 seamlessly	 merging	 probabilistic	 severe	 weather	
outlooks	with	probabilistic	severe	weather	warnings	as	part	of	the	NOAA	WoF	and	FACETS	initiatives.	

In	 addition	 to	 the	 complete	 suite	 of	 observational	 and	model	 data	 available	 in	 SPC	 operations,	 first-
guess	guidance	for	individual	severe	weather	hazards	was	available	to	assist	in	generating	the	higher	temporal	
resolution	 outlooks.	 Calibrated	 guidance	 for	 the	 individual	 hazards,	 as	 derived	 from	 the	 SREF	 (environment	
information)	and	SSEO	(explicit	storm	attributes;	Jirak	et	al.	2014),	was	available	in	4-h	periods.		The	1600-1200	
UTC	 human	 forecasts	 for	 the	 SPC	 Desk	 were	 also	 temporally	 disaggregated	 (Jirak	 et	 al.	 2012)	 into	 the	 4-h	
periods	(1800-2200	UTC	and	2200-0200	UTC)	using	SSEO	guidance	to	provide	additional	timing	information	for	
the	four-hour	periods.	



At	the	 individual	hazards	desk,	participants	created	their	own	short-time-window	forecasts	on	Google	
Chromebooks	using	a	web-based	tool	to	draw	severe	weather	probability	lines.		The	participant	forecasts	were	
compared	to	one	another	and	to	a	“control”	forecast	issued	by	the	lead	forecaster	using	N-AWIPS.		At	the	total	
severe	desk,	the	full	period	and	short-time-window	forecasts	were	issued	as	a	group.		However,	the	isochrones	
were	drawn	by	 five	 small	 groups	using	 the	Chromebooks.	 	 The	 lead	 forecaster	at	 the	 total	 severe	desk	drew	
isochrones	independently	using	N-AWIPS.			
	 Severe	weather	forecasts	were	also	generated	for	Day	2	to	explore	the	feasibility	of	issuing	forecasts	of	
individual	severe	storm	hazards	beyond	Day	1,	where	current	SPC	operational	forecasts	for	Day	2	(and	beyond)	
only	consider	probabilities	of	total	severe.		In	particular,	operational	and	experimental	CAM	guidance	were	
examined	to	assist	in	the	individual	hazard	forecasts	for	Day	2.		Forecasts	for	total	severe	were	also	generated	
for	Day	2	and/or	Day	3	if	time	and	interest	allowed.		This	provided	an	opportunity	to	explore	convection-
allowing	guidance	from	MPAS	into	Day	3.	

Finally,	each	desk	examined	observational	trends	and	morning/afternoon	model	guidance	to	update	(or	
add	to)	their	respective	short-time-window	forecasts	made	earlier	in	the	day.		The	individual	hazard	forecasts	
were	updated	for	the	2200-0200	UTC	period	while	the	total	severe	forecasts	were	updated	for	the	2200-0200,	
0000-0400,	and	0200-0600	UTC	periods.		In	addition,	the	total	severe	desk	updated	their	total	severe	
isochrones,	contouring	the	2200,	0000,	and	0200	UTC	times.				

	
	 2)	FORECAST	AND	MODEL	EVALUATIONS	
	

While	much	can	be	learned	from	examining	model	guidance	and	utilizing	it	to	help	create	experimental	
forecasts	 in	 real	 time,	an	 important	 component	of	 SFE2016	was	 to	 look	back	and	evaluate	 the	 forecasts	and	
model	guidance	from	the	previous	day.		There	were	two	periods	of	formal	evaluations	during	SFE2016.		The	first	
was	during	the	morning	when	experimental	outlooks	from	the	previous	day	generated	by	both	forecast	teams	
were	examined.	 	 In	these	next-day	evaluations,	the	team	forecasts	and	first-guess	guidance	was	compared	to	
observed	 radar	 reflectivity,	 severe	 weather	 reports,	 NWS	 warnings,	 and	 Multi-Radar	 Multi-Sensor	 (MRMS)	
radar	estimated	hail	sizes.			

Objective	 verification	metrics	 were	 also	 computed	 for	 some	 of	 the	 experimental	 outlooks	 and	 first-
guess	guidance.	 	 	Similar	 to	SFE2014	and	SFE2015,	experimental	probabilistic	 forecasts	of	 tornado,	wind,	and	
hail	were	evaluated	using	the	Critical	Success	Index	(CSI)	and	Fractions	Skill	Score	(FSS)	based	on	the	local	storm	
reports	 (LSRs)	as	the	verification	event.	 	Supplemental	observations	for	hail	 from	the	MRMS-based	Maximum	
Estimated	 Size	 of	 Hail	 (MESH)	 were	 also	 used	 in	 near	 real-time	 to	 calculated	 skill	 scores	 and	 gauge	 the	
usefulness	of	alternative	 sources	 for	verification.	 	A	quality	control	measure	was	applied	 to	 the	hourly	MESH	
grids,	which	 ensured	 the	 existence	of	 nearby	 CG	 lightning	 flashes.	 	 Further,	 only	 spatially	 filtered	 grids	were	
considered	to	ensure	the	presence	of	contiguous	swaths	in	the	MESH	(Melick	et	al.	2014).			

The	 second	 evaluation	 period	 occurred	 during	 the	 afternoon,	which	was	 focused	 on	 comparisons	 of	
different	 ensemble	 diagnostics	 and	 CLUE	 ensemble	 subsets.	 	 The	 total	 severe	 and	 individual	 hazards	 desks	
conducted	two	different	sets	of	evaluations.			

	
3.		Preliminary	Findings	and	Results	

a)	Evaluation	of	experimental	forecast	products	–	Total	Severe	Desk	

	 SFE2016	participants	subjectively	evaluated	the	 full	period	probabilistic	 forecasts	of	 total	 severe	each	
morning	on	a	scale	of	1-10.	 	Specifically,	participants	were	asked	to,	“Use	a	rating	scale	from	Very	Poor	(1)	to	
Very	Good	(10).	 	Areas	with	greater	severe	storm	occurrence	higher	forecast	probabilities,	and	the	forecast	or	



occurrence	of	 significant	 reports,	 should	be	given	more	weight	 in	 the	 rating	process.	 	Also,	 take	 into	account	
radar-derived	severe	weather	proxy	products	in	assessing	the	quality	of	the	forecasts.”	An	example	image	used	
to	conduct	full	period	ratings	is	shown	in	Figure	3.		This	forecast	was	made	the	morning	of	17	May	and	verified	
the	next	day.		Nine	participants	rated	this	forecast	7/10	while	one	rated	it	6/10.			

	

Figure	3	Left	panel:	Experimental	Day	1	outlook	for	total	severe	weather	valid	1600	–	1200	UTC	17-18	May	2016	
with	locations	of	storm	reports	overlaid.		Right	panel:	Practically	perfect	hindcast	probabilities	with	the	
locations	of	storm	reports	overlaid.			

	 The	distribution	of	 subjective	 ratings	 for	 all	 of	 the	 full	 period	outlooks	 (including	Days	1,	 2,	 and	3)	 is	
shown	in	Figure	4.		It	is	important	to	note	that	each	day	of	the	experiment	had	a	Day	1	full	period	outlook,	while	
Day	2	and	Day	3	outlooks	were	issued	based	on	the	anticipated	severity	and	forecast	uncertainty	of	the	long-
range	weather.		Day	2	forecasts	were	issued	nearly	every	day,	while	Day	3	forecasts	were	only	issued	on	7	days.		
Most	Day	1	outlooks	had	 relatively	high	 ratings,	 generally	 above	a	5/10.	 The	Day	2	outlooks	 tended	 to	have	
more	broadly	distributed	ratings,	with	nearly	as	many	 low	ratings	as	high	ratings.	Since	the	 issuance	of	Day	3	
forecasts	 was	 reserved	 for	 days	 in	 which	 the	 weather	 was	 anticipated	 to	 be	 severe,	 the	 sample	 of	 Day	 3	
forecasts	does	not	encompass	the	marginal	severe	weather	days	experienced	in	SFE2016.	However,	a	majority	
of	the	forecasts	were	rated	as	either	a	5	or	a	6.		Participants	noted	both	displacement	and	magnitude	issues	in	
their	comments.	 	Participants	also	discussed	whether	to	rate	these	the	Day	3	forecasts	as	they	would	a	Day	1	
forecast.	 	 Because	predictability	 generally	 increases	with	 decreasing	 lead-time,	 a	 “good”	Day	 3	might	 not	 be	
considered	 a	 “good”	 forecast	 at	 Day	 1	 lead-time.	 	 Based	 on	 the	 subjective	 ratings	 and	 comments,	 most	
participants	 opted	 to	 rate	 the	 forecasts	 based	 on	 the	 correspondence	 with	 reports	 (i.e.,	 not	 taking	 into	
consideration	whether	they	were	rating	a	Day	1	or	Day	3	forecast).			
	 In	 addition	 to	 the	 full-period	 outlooks,	 lead	 forecasters	 and	 participants	 generated	 a	 set	 of	 five,	 4-h	
time	window	probabilities	for	total	severe	each	morning.		Three	of	these	periods	were	updated	in	the	afternoon	
using	 the	 most	 recent	 model	 guidance	 and	 observations.	 	 The	 distributions	 of	 subjective	 ratings	 for	 these	
forecasts	are	shown	in	Figure	5.	 	The	distributions	of	these	rating	are	very	similar	and	each	time	period	has	a	
median	 rating	 of	 7.	 	 However,	 the	 afternoon	 updates	 did	 tend	 to	 have	 higher	 ratings	 than	 their	 morning	
counterparts,	particularly	 for	 the	2200-0200	and	0000-0400	UTC	periods.	 	 Similar	 to	 the	 full-period	outlooks,	
participants	 comment	 on	 the	 extent	 and	 intensity	 of	 forecast	 probabilities,	 but	 mentioned	 more	 nuanced	



forecast	 considerations	 such	 as	 convective	 initiation	 and	 the	 maintenance	 of	 cloud	 layers	 that	 inhibited	
convection.			
	

	
Figure	4	Distribution	of	subjective	ratings	(1-10)	for	the	full-period	hourly	experimental	forecasts	issued	by	1600	

UTC.	Day	1	ratings	(blue)	covered	1600	UTC	–	1200	UTC	the	following	day,	while	Day	2	(teal)	and	Day	3	
(yellow)	forecasts	covered	1200	UTC	–	1200	UTC.		

	

Figure	5	Box	plots	showing	distributions	of	subjective	ratings	for	the	initial	morning	4-h	forecast	periods	and	
afternoon	updates	of	those	periods.	The	red	line	indicates	the	median	rating	for	each	period,	the	teal	
circle	indicates	the	mean	rating,	and	the	red	crosses	are	outliers.		



	 Finally,	the	participants	and	lead	forecaster	drew	isochrones	of	severe	weather	at	two-hour	intervals	to	
delineate	 the	 start-time	of	 the	 4-h	 time	window	with	 the	highest	 total	 severe	probabilities.	 	 Recall,	 the	 lead	
forecaster	drew	their	own	isochrones,	while	participants	broke	down	into	5	small	groups	that	each	generated	
their	own	set	of	isochrones.		An	example	of	isochrone	forecasts	and	verifying	storm	reports	is	shown	in	Figure	6.		
For	the	next-day	subjective	evaluations,	participants	were	asked	to,	“Use	a	rating	scale	 from	Very	Poor	 (1)	 to	
Very	Good	(10).		Consider	whether	the	majority	of	reports	for	each	period	fell	within	the	correct	areas	indicated	
by	 the	 isochrones”.	 	 Note,	 these	 subjective	 ratings	 were	 only	 for	 the	 lead	 forecaster’s	 isochrones	 forecasts.		
Participants	were	given	the	options	to	make	comments	about	their	own	isochrones	forecasts,	but	there	was	no	
formal	 rating	 assigned.	 	 For	 the	 initial	 isochrone	 forecasts	 that	were	 issued	 in	 the	 late	morning	 by	 the	 lead	
forecaster,	the	distribution	of	subjective	ratings	was	relatively	broad	and	non-skewed	with	a	median	rating	of	7.		
For	 the	 final	 isochrones	 forecasts	 that	were	 issued	 in	 the	afternoon,	 the	subjective	 ratings	 improved	and	 the	
distribution	was	slightly	right-skewed	with	a	median	rating	of	8	(Fig.	7).				
	
	

	
	
Figure	6	Isochrone	forecasts	for	5	May	2016.	 	Storm	reports	that	occurred	during	the	2200	–	0200	UTC	period	

are	overlaid.		The	lead	forecaster	of	the	total	severe	team	generated	the	bottom	right	panel	with	the	red	
isochrones,	while	all	other	panels	display	forecasts	generated	by	participants.	

	
	
	 	
	
	



	
Figure	7	Distribution	of	subjective	ratings	for	the	initial	(left)	and	final	(right)	isochrone	forecasts.			

	 Preliminary	objective	verification	of	isochrone	forecasts	has	also	been	conducted	by	mapping	forecast	
isochrones	to	an	80-km	grid	and	comparing	that	grid	to	observed	isochrones	generated	based	on	storm	reports.		
To	 generate	 the	 grid	 of	 observed	 isochrones,	 the	 spatial	 distribution	of	 reports	 that	 occurred	within	 the	 4-h	
time	windows	 1800-2200,	 2000-0000,	 2200-0200,	 0000-0400,	 and	 0200-0600	UTC	mapped	 to	 an	 80-km	 grid	
was	spatially	smoothed	using	a	Gaussian	kernel	with	a	smoothing	parameter	of	120-km.		Then	each	grid-point	
was	assigned	 the	 time	period	with	 the	highest	 smoothed	probability,	 creating	areas	of	 timeframes	 that	were	
contoured	 like	 isochrones.	 	 An	 example	 of	 forecast	 and	 observed	 isochrones	 is	 shown	 in	 Figure	 8,	 and	
distributions	of	differences	between	forecast	and	observed	severe	weather	timing	derived	from	the	isochrones	
is	shown	in	Figure	9.		Clearly,	most	forecasts	indicated	later	time	windows	for	the	highest	probability	of	severe	
weather	than	was	observed.		From	examining	the	maps	on	individual	days	it	appeared	that	the	start	period	for	
the	events	was	generally	well	forecast,	but	progression	was	often	forecast	to	be	too	slow.		As	discussed	during	
the	recent	“Probability	of	What	workshop”,	this	bias	may	be	related	to	a	time-centric	forecaster	mindset	(i.e.,	
where	will	severe	weather	be	at	a	given	time?),	as	opposed	to	location-centric	mindset	(i.e.,	when	will	the	time	
period	with	the	maximum	probability	of	severe	weather	occur	for	a	given	point?).			
	

	
Figure	8	Example	of	forecast	and	observed	isochrones	valid	10	May	2016.			

	



	
	
Figure	9	Relative	frequencies	of	differences	between	forecast	and	observed	severe	weather	timing	as	computed	

from	grids	derived	from	forecast	and	observed	isochrones.		Differences	in	timing	were	only	computed	for	
80-km	grid-points	that	fell	within	isochrones	for	both	forecasts	and	observations.		The	left	panel	is	for	all	
of	these	points,	while	the	right	panel	is	only	for	days	in	which	at	least	10	reports	occurred.				

	
	 Automated	 isochrone	 forecasts	 were	 also	 generated	 using	 the	 NSSL-WRF	 ensemble.	 	 These	 were	
constructed	by	mapping	maximum	forecast	UH	within	4-h	time	windows	from	each	ensemble	member	to	an	80-
km	grid.		Then,	at	each	80-km	grid-point	and	time	window,	severe	weather	probabilities	were	derived	by	finding	
the	 ratio	of	 ensemble	members	 that	 forecast	UH	≥	40	m2s-2	 and	applying	 a	Gaussian	 kernel	with	σ	=	90	 km.		
Finally,	 the	 isochrones	 were	 derived	 by	 finding	 the	 4-h	 time	 window	 at	 which	 these	 severe	 weather	
probabilities	 were	 highest.	 	 An	 example	 of	 these	 model-derived	 isochrones	 is	 shown	 in	 Figure	 10.	 	 This	
automated	product	was	not	 formally	evaluated,	but	was	generally	very	well	 received.	 	 In	 the	SFE2016	report	
from	the	 total	 severe	desk	 lead	 forecaster	Dave	 Imy,	he	states,	 “In	my	opinion,	 the	 [model-derived	guidance]	
provided	excellent	and	broader	guidance	than	our	individual	forecast.		If	isochrones	were	to	be	implemented	as	
an	operational	forecast	product	in	the	future,	the	most	efficient	way	to	produce	them	might	be	by	choosing	an	
‘ensemble	 of	 choice’	 to	 generate	 them.	 	 Then	 a	 forecaster	 could	make	 adjustments	 based	 on	 the	 diagnostic	
weather	and	other	model	guidance.”	
	 During	 each	week	 of	 the	 experiment,	 it	 seemed	 to	 take	 about	 two	 days	 for	 the	 new	 participants	 to	
figure	 out	 exactly	 what	 was	 being	 forecast	 using	 the	 isochrones.	 	 It	 was	 found	 that	 the	 isochrones	 were	
relatively	 easy	 to	draw	 for	progressively	organized	 systems.	 	However,	 in	 situations	with	weak	 flow	 in	which	
mesoscale	features	instead	of	strong	dynamical	forcing	dominate	convective	evolution,	the	isochrones	became	
much	more	difficult	to	draw.		For	example,	in	situations	with	“back	building”	convection,	a	“perfect	prog”	would	
have	 had	 little	 or	 no	 spacing	 between	 the	 isochrones,	 which	was	 not	 very	 intuitive.	 	 For	 testing	 isochrones	
during	SFE2017,	the	total	severe	desk	lead	forecaster	report	brings	up	several	questions/issues	to	address:	the	
phrase	 “a	majority	or	 greatest	 severe	 coverage”	has	 to	be	better	 defined,	 along	with	 the	number	of	 reports	
needed	to	constitute	an	“accurate”	isochrones	forecast.		Also,	a	“perfect	prog”	verification	of	isochrones	should	
be	 generated	 to	 help	 participants	 calibrate	 their	 isochrone	 forecasts.	 	 Finally,	 it	 is	 recommended	 that	 15%	
severe	 weather	 probability	 be	 the	minimum	 probability	 for	 drawing	 isochrones,	 because	 lower	 probabilities	
usually	imply	only	marginal	and/or	isolated	reports.			



	

Figure	10	Example	of	automated	 isochrone	 forecast	generated	 from	 the	NSSL-WRF	ensemble	 for	 the	 forecast	
initialized	 0000	UTC	 5	May	 16	 and	 valid	 over	 the	 1200-1200	UTC	 time	 frame	 (forecast	 hours	 12-36).		
Contours	 indicate	 the	 start	 times	 of	 the	 4-h	 time	windows	with	 highest	 severe	weather	 probabilities,	
while	the	shading	indicates	the	total	probability	of	severe	weather	over	the	1200	–	1200	UTC	period.			

	
	
b)	Evaluation	of	experimental	forecast	products	–	Severe	Hazards	Team	

	 The	 severe	 hazards	 team	 conducted	 daily	 evaluations	 comparing	 temporally	 disaggregated	 4-h	 first	
guess	guidance	for	severe	hazards	(i.e.,	tornado,	hail,	and	wind)	to	calibrated	guidance	generated	from	the	SREF	
and	SSEO	(Jirak	et	al.	2014).		The	first-guess	probabilities	for	the	4-h	periods	were	generated	using	the	temporal	
disaggregation	 technique	 (Jirak	 et	 al.	 2012)	 by	 incorporating	 the	 full-period	 hazard	 outlook	 to	 constrain	 and	
scale	 the	 magnitude	 and	 spatial	 extent	 of	 the	 4-h	 calibrated	 probabilities.	 This	 comparison	 provides	 an	
indication	 of	 how	 incorporating	 the	 human	 full-period	 outlook	 can	 improve	 upon	 the	 4-h	 calibrated	 model	
guidance.		An	example	forecast	for	tornadoes	is	shown	in	Figure	11.			
	 During	the	1800-2200	UTC	period,	the	disaggregated	first-guess	guidance	was	rated	similarly	to	slightly	
better	 than	 the	calibrated	guidance	 (Fig.	12;	 rating	around	0	on	a	 scale	of	 -3	 to	+3).	 	 For	 the	2200-0200	UTC	
period,	 however,	 the	 disaggregated	 first-guess	 guidance	 was	 generally	 rated	 as	 an	 improvement	 over	 the	
calibrated	model	guidance.	



	

Figure	11	Example	probabilistic	tornado	forecasts	issued	from	the	severe	hazards	desk	on	24	May	2016	and	valid	
for	 the	 2200-0200	 UTC	 time	 period	 with	 tornado	 reports	 overlaid.	 	 (a)	 Automated	 forecast	 using	
temporal	disaggregation,	(b)	calibrated	forecast	using	SREF	and	SSEO,	(c)	preliminary	forecast	issued	by	
the	severe	hazards	team	in	the	morning,	and	(d)	the	final	forecast	issued	in	the	afternoon.		(e)	Practically	
perfect	probabilities	derived	from	the	distribution	of	observed	tornadoes.				

	

	

Figure	12	Box	plots	 showing	 the	distributions	of	 subjective	 ratings	 (-3	 to	+3)	of	 the	 temporally	disaggregated	
first-guess	guidance	compared	to	the	calibrated	guidance	for	tornado	(red),	hail	(green),	and	wind	(blue)	
during	the	1800-2200	UTC	(left)	and	2200-0200	UTC	(right)	periods.		



The	 preliminary	 and	 final	 tornado,	 wind,	 and	 hail	 forecasts	 for	 the	 2200-0200	 UTC	 period	 were	
subjectively	 compared	 to	 determine	 the	 relative	 value	 of	 the	 afternoon	 forecast	 updates	 (Fig.	 13).	 	 Overall,	
updating	 the	 forecasts	 in	 the	 afternoon	 generally	 resulted	 in	 similar	 or	 better	 forecast	 quality.	 	 Although	 the	
improvement	was	marginal	 (i.e.	 typically	0	 to	+1	 rating)	 and	often	provided	 later	 confirmation	of	 the	existing	
threat,	it	was	rare	for	the	afternoon	updates	to	result	in	degraded	forecast	quality.	

	

Figure	13.		As	in	Fig.	12,	except	for	the	distribution	of	subjective	ratings	(-3	to	+3)	for	the	final	forecast	compared	
to	the	preliminary	forecast	for	tornado	(red),	hail	(green),	and	wind	(blue)	during	the	2200-0200	UTC	
period.		

	

c)	Model	Evaluations	–	Total	Severe	Desk	

	 1)	ARW	VS.	NMMB		

	 Participants	were	asked	to	compare	two	members	of	 the	CLUE	that	used	the	same	 ICs/LBCs,	but	had	
different	dynamic	cores;	specifically,	NMMB	and	ARW.		During	the	evaluations,	participants	assigned	separate	
subjective	ratings	to	reflectivity,	hourly	maximum	fields	such	as	updraft	helicity,	and	thermodynamic	fields	such	
as	temperature.		Subjective	ratings	were	taken	from	9	May	onward	because	of	the	previously	mentioned	bug	in	
the	NMMB	members	run	by	CAPS.		An	example	24	h	forecast	and	corresponding	observations	of	reflectivity	for	
forecasts	initialized	23	May	2016	is	shown	in	Figure	14.			
	 Ratings	of	simulated	reflectivity	had	roughly	the	same	distribution	characteristics	(Fig.	14),	however,	a	
closer	look	at	these	distributions	reveals	slightly	different	shapes,	with	a	generally	broader	distribution	for	the	
NMMB	core	(Fig.	15b	and	c).	 	However,	both	NMMB	and	ARW	cores	performed	similarly	for	reflectivity,	most	
often	receiving	ratings	of	5/10.		The	hourly	max	fields	tended	to	be	rated	more	highly	with	the	ARW	member,	
though,	the	median	rating	was	the	same.		The	thermodynamic	fields,	however,	were	rated	much	more	highly	in	
the	ARW.		These	variables	included	temperature,	dew	point,	and	surface-based	CAPE.		Participants’	comments	
revealed	that	the	members	tended	to	trend	in	similar	ways.		For	example,	one	participant	said	for	16	May	2016,	
“Both the ARW and NMMB were too slow with the front and both models do not dry out the air mass behind the 
front fast enough. NMMB did better with the instability axis into MO than the ARW”.  	



	
Figure	14	(left)	Simulated	reflectivity	at	24	h	forecast	lead-time	from	the	ARW	member,	(middle)	same	as	left,	

except	for	NMMB,	and	(right)	corresponding	observations.			
	

	 	

Figure	15	(a)	Box	plots	for	three	categories	of	subjective	ratings	for	ARW	and	NMMB	simulations.		The	red	line	
indicates	the	median.		(b)	Distribution	of	subjective	ratings	for	the	ARW	on	a	scale	of	1-10.	(c)	Same	as	
(b)	except	for	NMMB.			



This	type	of	comparison,	where	the	participant	noted	that	both	were	off,	but	one	was	off	more	so	than	others,	
was	fairly	typical	and	often	accompanied	numerical	ratings	that	were	identical,	as	participants	did	not	consider	
the	differences	to	be	significant	enough	to	warrant	different	ratings.			
	
	 2)	SINGLE	CORE	VS	MULTI-CORE	
	
	 Three	ensembles	were	compared	to	test	the	effectiveness	of	a	single	core	vs.	multi-core	configuration.	
The	first	ensemble	consisted	of	5	ARW	and	5	NMMB	members,	the	second	was	comprised	of	10	ARW	members,	
and	 the	 third	 consisted	 of	 10	 NMMB	members.	 	 Comparisons	 were	 made	 using	 probabilities	 of	 reflectivity	
greater	than	40	DbZ,	maximum	from	any	member	UH,	and	probabilities	of	UH	>25	and	>100	m2s-2.	An	example	
comparison	is	shown	in	Figure	16.			

	

Figure	 16	 Example	 forecast	 imagery	 for	 the	 single	 core	 vs.	 multi-core	 ensemble	 comparisons	 for	 forecasts	
initialized	0000	UTC	27	May	2016.	 	 Ensemble	maximum	 from	any	member	UH	 for	 the	2200-0200	UTC	
period	with	 storm	 reports	 overlaid	 for	 ensembles	 comprised	 of	 (a)	 ARW,	 (b)	 NMMB,	 and	 (c)	 a	mix	 of	
NMMB	 and	 ARW	 members.	 	 Probabilities	 of	 UH	 >	 100	 with	 storm	 reports	 overlaid	 derived	 from	
ensembles	comprised	of	(a)	ARW,	(b)	NMMB,	and	(c)	a	mix	of	NMMB	and	ARW	members.	

	 From	the	subjective	ratings,	the	ARW	and	multi-core	ensemble	tended	to	receive	higher	ratings	than	the	
NMMB	ensemble	for	hourly	maximum	fields.	 	For	reflectivity,	all	ensembles	were	rated	similarly,	and	they	did	
not	receive	as	high	ratings	as	the	hourly	maximum	fields.		The	ARW	had	a	larger	IQR	in	the	reflectivity	than	the	
other	ensembles	(Fig.	17).	Regarding	the	hourly	maximum	fields,	the	largest	difference	between	the	subjective	
ratings	of	the	ARW	and	NMMB	ensembles	on	any	given	day	was	three	points,	with	the	ARW	outperforming	the	



NMMB	by	 three	points	eight	 times	 in	 the	 ratings	and	 the	NMMB	besting	 the	ARW	by	 three	points	 twice.	The	
differences	between	the	single	core	ensembles	was	larger	than	the	difference	between	either	of	the	single-core	
ensembles	 and	 the	multi-core	 ensemble:	 the	 largest	 difference	with	 the	 ARW	 ensemble	 occurred	when	 one	
participant	 rated	 the	 ARW	 ensemble	 three	 points	 higher	 than	 the	 multi-core	 ensemble,	 and	 the	 largest	
difference	with	the	NMMB	ensemble	occurred	when	one	participant	rated	the	multi-core	ensemble	four	points	
better	than	the	NMMB	ensemble.	Besides	these	two	occurrences,	the	difference	between	either	of	the	single-
core	ensembles	and	the	multi-core	ensemble	was	two	points	or	fewer.	

	

Figure	 17	 Box	 plots	 comparing	 the	 subjective	 ratings	 of	 (left)	 hourly	 maximum	 fields	 and	 (right)	 reflectivity	
between	the	single	core	ensembles	and	the	multi-core	ensemble.	A	red	line	indicates	the	median.		

	
	 Objective	comparisons	of	the	single	vs.	multi-core	ensemble	strategies	were	also	performed	for	severe	
weather	 and	QPF	 forecasting.	 	 For	 severe	weather,	UH	was	 used	 as	 a	 severe	weather	 proxy	 to	 create	Day	 1	
severe	weather	 probabilities	 following	 the	methods	 of	 Sobash	 et	 al.	 (2011,	 2016),	 and	 then	 probabilistic	 skill	
metrics	 were	 used	 to	 verify	 against	 storm	 reports.	 	 One	 complication	 of	 comparing	 these	 surrogate	 severe	
probability	forecasts	(SSPFs)	is	that	the	distributions	of	UH	in	the	ARW	and	NMMB	cores	is	different.		Thus,	UH	
percentiles	 (as	 opposed	 to	 fixed	 thresholds)	 were	 computed	 after	 re-gridding	 UH	 to	 80-km	 grids.	 	 The	
percentiles	used	were:	0.925,	0.95,	0.955,	0.96,	0.965,	0.97,	0.975,	0.98,	0.985,	0.99,	0.995,	0.9975,	0.9999,	and	
0.99999.		Then,	to	create	SSPFs,	a	range	of	smoothing	parameters	(i.e.,	the	standard	deviation	of	the	Gaussian	
kernel)	was	used	(9	total):	40,	60,	80,	100,	120,	140,	160,	180,	and	200	km.		A	set	of	example	SSPFs	is	shown	in	
Figure	18.	
	 One	interesting	result	came	from	comparing	the	values	of	UH	in	the	ARW	and	NMMB	for	the	different	
UH	percentiles	(Fig.	19).		After	re-gridding	the	UH	to	the	80-km	grid	by	finding	the	maximum	UH	from	all	the	3-
km	 grid-points	 that	 fell	 within	 each	 80-km	 box,	 the	NMMB	 had	 higher	 UH	 at	 all	 percentiles.	 	 From	 a	 similar	
comparison,	but	using	the	raw	UH	from	the	3-km	grids,	ARW	had	higher	UH	up	to	the	99.999	percentile,	after	
which	 the	NMMB	had	higher	UH.	 	This	 result	 implies	 that	higher	UH	for	 the	NMMB	on	the	80-km	grid	comes	



from	 extremely	 small-scale,	 perhaps	 event	 grid-point	 scale,	 maxima.	 	 This	 difference	 may	 be	 explained	 by	
differences	in	how	UH	is	computing	within	the	NMMB	and	ARW	cores,	but	this	has	yet	to	be	confirmed.			
	

	
	
Figure	 18	 SSPFs	 (shaded)	 and	 the	 areas	 over	 which	 storm	 reports	 occurred	 (white	 hatching)	 for	 forecasts	

initialized	0000	UTC	9	May	2016	and	valid	1200-1200	UTC	(forecast	hours	12-36)	from	ensembles	using	
(a)	10	ARW	members,	(b)	10	NMMB	members,	(c)	a	mix	of	10	ARW	and	NMMB	members,	and	(d)	a	mix	
of	20	ARW	and	NMMB	members.			FSS	and	ROC	areas	are	indicated	at	the	top	of	each	panel.			

	

	
Figure	19	UH	values	as	a	function	of	percentile	in	the	NMMB	and	ARW	for	the	80-km	grid	(left)	and	the	3-km	grid	

(right).			



	 To	 visualize	ensemble	 forecast	 skill,	 ROC	area	and	FSS	 are	plotted	as	 a	 function	of	UH	percentile	 and	
smoothing	parameter	for	each	of	the	three	ensembles	in	Figure	20.		The	highest	ROC	areas	occur	at	smoothing	
parameters	 from	60	 to	120	km	and	UH	percentiles	 from	95%	 to	96%,	which	 corresponds	 to	UH	values	 in	 the	
range	20-35	m2s-2.		The	ARW	ensemble	has	slightly	higher	peak	ROC	areas	than	NMMB,	but	the	mixed	ensemble	
of	5	ARW	and	5	NMMB	members	has	the	highest	ROC	areas.		A	similar	plot,	but	for	FSS,	is	shown	in	Figure	21.		
For	FSS,	scores	are	maximized	at	larger	smoothing	parameters	and	UH	percentiles	than	the	ROC	areas.		FSSs	for	
the	NMMB	 and	 ARW	 ensembles	 are	 very	 similar,	 but	 similar	 to	 the	 ROC	 areas,	 the	mixed	 ensemble	 has	 the	
highest	 scores.	 	 	 For	 both	 FSS	 and	 ROC	 areas,	 an	 ensemble	 comprised	 of	 a	 mix	 of	 10	 ARW	 and	 10	 NMMB	
members	had	almost	identical	forecast	skill	as	the	5	ARW	and	5	NMMB	members	(not	shown).			
	

	
Figure	20	ROC	areas	as	a	function	of	smoothing	parameter	and	UH	percentile	for	ensemble	comprised	of	(a)	ARW	

members,	(b)	NMMB	members,	and	(c)	a	mix	of	ARW	and	NMMB	members.	
	



	
Figure	21	Same	as	Fig.	20,	except	for	FSS.	
	
	 To	examine	the	reliability	of	the	three	ensembles,	reliability	diagrams	for	seven	of	the	UH	percentiles	
and	five	of	the	smoothing	parameters	are	shown	in	Figure	22.		In	general,	as	the	smoothing	parameter	and	UH	
percentile	increases,	the	observed	relative	frequencies	increase.		The	best	reliabilities	occur	with	the	UH	
percentile	of	99%	(UH	=	70.5	m2s-2	in	the	ARW	ensemble)	and	smoothing	parameters	in	the	range	80	to	120	km.		
There	is	not	a	noticeable	difference	in	reliability	between	any	of	the	three	ensembles.		Note,	the	FSS	scores	
maximize	at	smoothing	parameters	and	UH	percentiles	very	close	to	the	best	reliability.		However,	the	ROC	
areas,	which	are	generally	not	affected	by	reliability,	maximize	at	smoothing	parameters	and	UH	percentiles	at	
which	there	is	strong	over-forecasting.			
	
	



	
	
Figure	 22	 Reliability	 diagrams	 for	 various	 UH	 thresholds	 and	 sigmas	 (i.e.,	 smoothing	 parameters)	 for	 SSFPs	

derived	from	ARW-only,	NMMB-only,	and	a	mix	of	NMMB	and	ARW	members.			
	



	 For	objective	QPF	verification,	a	2/3	CONUS	domain	(east	of	Rockies)	is	used	with	a	land	mask.		NCEP’s	
Stage	IV	precipitation	estimates	are	used	as	observations.		The	Stage	IV	data	and	forecasts	are	both	re-gridded	
to	a	common	4-km	grid	and	bias,	equitable	threat	score	(ETS),	and	ROC	areas	are	calculated.		Additionally,	time-
longitude	plots	of	diurnally	averaged	precipitation	are	constructed	to	examine	the	depiction	of	the	diurnal	cycle	
averaged	over	 all	 24	days	of	 SFE2016.	 	 The	 time-longitude	plots	 for	ARW	and	NMMB	members	 are	 shown	 in	
Figures	23	and	24,	respectively.		Clearly	both	sets	of	members	capture	the	main	features,	(i.e.,	propagating	axis	
of	 rainfall	 at	 night,	 and	 non-propagating	 area	 during	 afternoon),	 but	 there	 is	 obvious	 over-prediction	 in	 the	
NMMB,	especially	for	the	first	12	h	of	the	forecast	in	the	axis	of	propagating	rainfall.		To	quantify	how	well	each	
set	 of	members	 depicts	 the	diurnal	 cycle,	 spatial	 correlations	 in	 time-longitude	 space	between	each	member	
and	observations	were	computed	and	the	distributions	of	correlations	over	forecast	hours	3-36	and	18-36	are	
shown	 in	 Figure	 25.	 	 For	 both	 of	 these	 periods	 the	 ARW	members	 have	 a	 clear	 advantage	 over	 the	 NMMB	
members.	
	

	
Figure	23	Time-longitude	diagram	of	precipitation	averaged	over	each	forecast	hour	for	all	24	days	of	SFE2016	

for	all	ARW	members	(top	two	rows)	and	observations	(bottom	left).			
	
	



	
Figure	24	Same	as	Fig.	23,	except	for	NMMB	members.			
	

	
	
Figure	 25	 Distribution	 of	 spatial	 correlation	 coefficients	 of	 precipitation	 in	 time-longitude	 space	 for	 ARW	 and	

NMMB	members	during	the	forecast	periods	3-36	h	and	18-36	h.			



	 Bias	 and	 ETS	 for	 24	 h	 accumulated	 precipitation	 (valid	 1200-1200	 UTC	 or	 forecast	 hours	 12-36)	 was	
calculated	 for	seven	thresholds	 ranging	 from	0.10	 to	4.00-in	 (Fig.	26).	 	The	bias	 for	 the	ARW	members	 is	very	
close	 to	1.0	 (perfect	bias)	 at	 all	 rainfall	 thresholds.	 	 The	NMMB	members	have	 slight	under-prediction	at	 low	
thresholds	 and	 over-prediction	 at	 high	 thresholds.	 	 For	 24	 h	 ETS	 (Fig.	 27),	 the	 ARW	 members	 have	 a	 clear	
advantage	 at	 thresholds	 up	 to	 1.0-in.	 	 At	 thresholds	 above	 1.0-in,	 all	 scores	 are	 very	 low	 and	 similar	 to	 one	
another.			
	

	
Figure	 26	 Bias	 as	 a	 function	 of	 threshold	 for	 24	 h	 accumulated	 precipitation	 from	 the	ARW	 (red)	 and	NMMB	

(black)	members.			
	

	
Figure	27	Same	as	Fig.	25,	except	for	equitable	threat	score	(ETS).			
	
	 To	verify	probabilistic	precipitation	forecasts	(PQPF),	probabilities	were	computed	on	the	4-km	grid	by	
finding	where	the	rainfall	threshold	fell	within	the	distribution	of	ensemble	members.	 	For	points	at	which	the	
rainfall	threshold	was	greater	than	the	amounts	from	all	ensemble	members,	a	Gumbel	distribution	(for	extreme	
values)	 was	 used	 to	 estimate	 the	 probabilities	 (e.g.,	 Clark	 et	 al.	 2009).	 	 In	 addition,	 the	 probabilities	 were	



smoothed	using	a	Gaussian	kernel	with	smoothing	parameters	of	10,	25,	and	50	km.		The	ROC	areas	for	PQPF	as	
a	function	of	threshold	for	the	three	sets	of	ensembles	are	shown	in	Figure	28.	 	From	this	plot,	 it	 is	clear	that	
increasing	 the	 smoothing	 helps	 the	most	 of	 the	 highest	 thresholds.	 	 Also,	 the	ARW	ensemble	 performs	 best,	
even	slightly	better	than	the	mixed	ensemble.			
	

	
Figure	28	ROC	area	as	a	function	of	precipitation	threshold	for	ensembles	comprised	of	ARW,	NMMB,	and	a	mix	

of	ARW	and	NMMB	members	using	smoothing	parameters	(sigma)	of	(a)	0	km,	(b)	10	km,	(c)	25	km,	and	
(d)	50	km.	

	
	
	 3)	HAIL	SIZE	FORECASTS	 	

	 Three	methods	of	hail	size	forecasting	were	tested	in	SFE2016:	(1)	HAILCAST,	an	algorithm	that	predicts	
maximum	hail	size	using	a	hila	growth	model	coupled	to	WRF,	(2)	the	Thompson	method,	which	is	based	directly	
on	microphysical	parameterization	information	such	as	the	graupel	size	distributions,	and	(3)	the	Gagne	method,	
which	is	based	on	a	machine-learning	algorithm.		More	details	on	each	method	can	be	found	in	the	operations	
plan	(Clark	et	al.	2016).	 	Probabilities	were	derived	from	a	single	ensemble	using	each	method.	 	Both	the	1-in	
and	2-in	hail	size	thresholds	were	examined.		Verification	was	performed	with	hail	reports	and	MESH.			
	 Participants	rated	HAILCAST	the	highest	in	forecasting	both	the	probability	of	hail	greater	than	1-	and	2-
in.	(Fig.	29).		The	Gagne	machine-learning	method	also	performed	well	when	forecasting	hail	greater	than	1-in.		
The	 Thompson	method	was	 generally	 rated	 the	 lowest	 of	 the	 three	methods.	 	 All	 three	methods	 obtained	 a	
broad	variety	of	ratings	throughout	the	experiment,	particularly	for	the	probability	of	hail	greater	than	2-in	as	
can	 be	 seen	 in	 the	 wide	 IQRs	 (Fig.	 29).	 	 HAILCAST	was	 noted	 to	 have	 generally	 higher	 coverage	 of	 1-in	 hail	



probabilities	compared	to	the	other	two	methods,	and	the	Thompson	method	was	noted	by	participants	to	have	
less	spatial	coverage	than	the	other	methods.	This	worked	to	the	Thompson	method’s	favor	on	days	with	 less	
hail,	while	hindering	it	on	days	with	more	hail.	The	Gagne	method	overall	received	favorable	comments,	with	a	
seemingly	even	split	in	participant	comments	as	to	whether	it	was	too	high	or	too	low	in	its	probabilities	at	both	
size	thresholds.	Participant	comments	note	the	Thompson	method’s	 tendency	to	produce	a	 lot	of	hail	greater	
than	2-in,	particularly	early	in	the	experiment.	

	

Figure	29	Box	plots	of	subjective	ratings	for	the	three	hail	size	forecasting	methods	examined	in	SFE2016.	 	The	
median	of	each	distribution	is	indicated	by	a	red	line.			

	
	 4)	MICROPHYSICS	COMPARISONS	
	
	 The	microphysics	 evaluation	was	an	open-ended	question	prompting	 the	participants	 to	 comment	on	
differences	in	reflectivity,	updraft	helicity,	temperature,	dew	point,	and	SBCAPE	for	five	members	of	CLUE	that	
were	 identically	 configured	except	 for	 their	microphysics	parameterizations.	Parameterization	 schemes	 tested	
were:	Morrison,	 Thompson,	 P3,	WSM6,	 and	M-Y.	 	 An	 example	 comparison	 is	 shown	 in	 Figure	 30.	 In	 general,	
participants	thought	that	all	microphysics	members	were	quite	similar,	and	details	of	which	scheme	performed	
best	 varied	 throughout	 the	 day.	 Cold	 pool	 strengths	 were	 also	 similar	 between	 the	 schemes.	 P3	 tended	 to	
develop	higher	updraft	speeds	than	other	members,	which	occasionally	caused	difficulties	in	completing	the	P3	
because	of	numerical	instability	issues.			

	

Probability of Hail ≥ 1” Probability of Hail ≥ 2” 



	

Figure	30	Forecasts	of	simulated	composite	reflectivity	valid	2100	UTC	19	May	2016	from	CLUE	members	with	
different	 microphysics	 parameterizations	 (scheme	 indicated	 by	 label	 on	 top	 of	 each	 panel).	 	 The	
corresponding	observed	composite	reflectivity	is	in	the	bottom	left	panel.			

	

	 5)	OBJECTIVE	VERIFICATION	OF	MPAS	FORECASTS		
	
	 The	NCAR	Model	 for	Prediction	Across	Scales	 (MPAS)	was	 run	 for	 the	 second	consecutive	year	during	
SFE2016.	MPAS	produced	5-day	 forecasts	 (120	hours)	 initialized	daily	at	0000	UTC	using	a	mesh	that	varies	 in	
horizontal	 resolution	 from	15-km	 globally	 to	 3-km	over	 the	 CONUS.	 Probabilistic	 forecasts	 of	 severe	weather	
were	generated	using	the	Surrogate	Severe	Probabilistic	Forecast	(SSPF)	method	detailed	by	Sobash	et	al.	(2011,	
2016).		The	forecasts	were	verified	against	observed	storm	reports	to	compute	CSI	and	ROC	curves	for	forecasts	
initiated	 May	 1	 through	 May	 31	 using	 1200-1200	 UTC	 windows	 on	 Days	 1-4	 for	 verification.	 An	 example	
probabilistic	forecast	is	shown	in	Figure	31.	
	 The	SSPF	methodology	requires	choosing	a	threshold	of	UH	to	compute	the	gridded	probabilities.	This	
value	 was	 determined	 following	 the	 methodology	 in	 Sobash	 et	 al.	 (2016)	 by	 choosing	 the	 threshold	 that	
produced	a	bias	closest	to	1	with	respect	to	the	gridded	storm	reports.	For	MPAS,	this	value	was	determined	to	
be	175	m2s-2	based	on	the	2016	dataset.	Using	this	threshold,	the	performance	diagrams	and	ROC	curves	were	
computed	over	 the	whole	month	 for	 the	Day	1	 through	Day	4	 forecasts	and	are	 shown	 in	Figures	32	and	33,	
respectively.	
	



	
Figure	31	Day	1	Severe	weather	probabilities	derived	from	a	1	May	2016	0000	UTC	initialization	of	MPAS	valid	

from	1200-1200	UTC	1-2	May	(forecast	hours	12-36)	with	storm	reports	indicated	by	blue	dots.	
	

	
Figure	32	ROC	curves	for	MPAS-derived	probabilistic	severe	weather	forecasts	at	Days	1-4	lead	times	for	the	1-31	

May	2016	time	period.			
	



	
Figure	33	Same	as	Fig.	31,	except	for	a	performance	diagram.	
	
 The	Day	1	forecasts	exhibit	the	greatest	CSI	and	highest	resolution	ROC	curves	and	overall	have	the	best	
performance	 at	 all	 probability	 thresholds	 (Fig.	 33).	 The	 Day	 2	 and	 Day	 3	 forecasts	 have	 non-zero	 CSI	 values,	
slightly	less	than	the	Day	1	forecasts,	but	are	comparable	with	each	other.	The	Day	2	forecasts	exhibited	slightly	
better	 skill	 at	 the	 lower	 probability	 thresholds	 but	 Day	 3	 exhibited	 higher	 skill	 at	 the	 mid-range	 probability	
thresholds.	The	least	skilled	forecasts	came	from	Day	4,	although	at	the	higher	probability	thresholds,	fell	in-line	
with	the	Day	2	and	Day	3	CSI	values.		
	 Currently,	 results	 are	 pending	 on	 the	 companion	 3-km	WRF	 120	 hour	 forecasts	 that	 will	 be	 used	 to	
compare	forecast	skill	beyond	Day	1	between	MPAS	and	existing	modeling	frameworks	in	order	to	determine	if	
additional	 skill	 is	 being	 added	 to	 the	 forecast.	While	 the	 results	 are	 still	 pending,	 some	preliminary	work	 has	
been	 done	 comparing	 the	 Day	 1	 MPAS	 forecasts	 to	 the	 Day	 1	 forecasts	 from	 the	 10	 member	 3-km	 NCAR	
Ensemble	using	the	same	verification	methods	discussed	previously	in	order	to	determine	if	the	model	has	value	
at	Day	1.	It	should	be	noted	that	the	NCAR	Ensemble	forecasts	are	treated	as	an	Ensemble-SSPF,	or	E-SSPF,	as	
detailed	 by	 Sobash	 et	 al.	 (2016).	 The	 ROC	 curves	 and	 performance	 diagram	 for	 both	 the	 MPAS	 and	 NCAR	
Ensemble	forecasts	are	shown	in	Figures	34	and	35,	respectively.	
	 The	NCAR	Ensemble	SSPFs	have	higher	values	of	CSI	in	the	lower	to	mid-range	probabilities,	but	MPAS	
trends	closely	and	even	passes	the	NCAR	Ensemble	at	the	higher	probability	thresholds.	This	is	likely	due	to	the	
fact	that	MPAS	has	a	UH	distribution	that	produces	a	longer	tail	into	the	higher	UH	values.	Additionally,	the	ROC	
curve	for	the	NCAR	Ensemble	SSPFs	displays	slightly	higher	resolution	than	the	SSPFs	for	MPAS	during	the	2016	
season.	
	
	
	



	
Figure	 34	 ROC	 curve	 for	 MPAS-derived	 (blue	 curve)	 and	 NCAR-ensemble-derived	 (orange	 curve)	 probabilistic	

severe	weather	forecasts	at	Day	1	for	the	1-31	May	2016	time	period.	
	

	
Figure	35	Same	as	Fig.	22,	except	for	a	performance	diagram.	



d)	Model	Evaluations	–	Severe	Hazards	Desk	
	
	 1)	HRRR	VS	NAMRR	

	 During	SFE2016,	the	1500	UTC	run	of	the	3-km	hourly	NCEP	experimental	NAMRR	Nest	was	examined	
for	the	first	time	in	the	HWT	and	compared	to	the	HRRRv2,	which	became	the	operational	version	of	the	HRRR	
at	NCEP	on	23	August	2016.		This	evaluation	activity	focused	on	a	regional	area	of	interest	and	evaluated	how	
well	 these	deterministic	runs	depicted	storms	 in	the	 initial	conditions	and	the	subsequent	evolution	of	storms	
during	the	15-h	forecast.	 	SFE	participants	subjectively	rated	the	reflectivity	forecasts	of	the	1500	UTC	cycle	of	
the	 HRRRv2	 and	NAMRR.	 	 Overall,	 the	 HRRRv2	 forecasts	 received	 higher	 subjective	 ratings	 than	 the	 NAMRR	
forecasts	during	SFE2016	(Fig.	36).			

Objective	 neighborhood	 verification	 (using	 a	 40-km	 radius	 of	 influence)	 was	 also	 performed	 on	
composite	 reflectivity	 forecasts	 from	 the	 1500	UTC	 cycle	 of	 the	HRRRv2	 and	NAMRR	 (Fig.	 37).	 	 	 The	HRRRv2	
shows	a	much	higher	POD	and	CSI	along	with	lower	FAR	than	the	NAMRR	at	the	30,	40,	and	50	dBZ	thresholds	
for	 all	 forecast	 hours	 of	 the	 1500	UTC	 cycle.	 	Overall,	 these	 objective	 verification	 results	 agree	well	with	 the	
subjective	 evaluation	 by	 SFE	 participants	 in	 showing	 the	 better-quality	 reflectivity	 forecasts	 of	 the	 HRRRv2	
compared	to	the	NAMRR.		

	

	

Figure	36	Histogram	of	subjective	ratings	(1-10)	from	SFE	participants	for	reflectivity	forecasts	over	a	mesoscale	
area	of	interest	from	the	1500	UTC	of	the	HRRRv2	(blue)	and	NAMRR	Nest	(green)	during	SFE2016.	



	

Figure	37	Performance	diagram	of	40-km	neighborhood	verification	of	composite	reflectivity	forecasts	over	the	
CONUS	from	the	HRRRv2	(blue)	and	NAMRR	(green)	for	the	1500	UTC	cycle	from	2	May	2016	through	3	
June	2016.	

	

	 2)	RADAR	DATA	ASSIMILATION	COMPARISONS	

	 Two	 10-member	WRF-ARW	 ensembles	with	 single	 physics	 from	 the	 CLUE	were	 compared	where	 the	
only	difference	is	the	assimilation	of	radar	data.		The	members	of	one	ensemble	had	radar	data	assimilated	in	
the	0000	UTC	NAM	analysis	using	the	CAPS	3DVar	method,	followed	by	applying	SREF	perturbations	for	IC/LBC	
diversity.		 The	 other	 ensemble	 did	 not	 include	 radar	 data	 assimilation,	 but	 still	 applied	 the	 same	 SREF	
perturbations	 to	 the	 0000	 UTC	 NAM	 analysis.		 Overall,	 the	 ensemble	 with	 radar	 data	 assimilation	 was	
subjectively	rated	slightly	better	than	the	ensemble	without	radar	data	assimilation	for	the	first	24	hours	of	the	
forecast	(Fig.	38).	



	

Figure	38	Distributions	of	 subjective	 ratings	 (1-10)	by	SFE	participants	of	probabilistic	 reflectivity	 forecasts	≥40	
dBZ	over	a	mesoscale	area	of	 interest	 for	 the	 first	24	hours	of	 the	single-physics	CLUE	ensembles	with	
and	without	radar	data	assimilation.	

	

The	 ensembles	were	 also	 compared	 to	 identify	 the	 length	 of	 time	 that	 radar	 data	 assimilation	 had	 a	
noticeable	positive	 impact	on	convection-allowing	ensemble	 forecasts.		During	 this	part	of	 the	evaluation,	 the	
ensembles	were	compared	side-by-side	with	the	observations	to	determine	the	length	of	the	positive	impact	of	
radar	data	assimilation.		The	results	show	a	wide	variation	in	the	length	of	impact	of	radar	data	assimilation,	but	
most	SFE	participants	felt	the	impact	often	fell	between	four	hours	and	thirteen	hours	into	the	forecast	(Fig.	39).		
The	objective	results	in	terms	of	fractions	skill	score	(FSS)	generally	agree	that	the	cumulative	positive	impact	is	
generally	lost	after	forecast	hour	fifteen	for	the	ensemble	with	radar	data	assimilation	(Fig.	40).	

	

	



	

Figure	39	Histogram	of	the	subjective	assessment	by	SFE	participants	on	how	long	into	the	forecasts	the	
assimilation	of	radar	data	has	a	positive	impact	on	the	ensemble	forecast.	

	

	

Figure	40	Accumulated	fractions	skill	score	of	reflectivity	forecasts	≥40	dBZ	by	forecast	hour	(fh01-fh24)	during	
SFE2016	 over	 a	 mesoscale	 area	 of	 interest	 for	 the	 CLUE	 ensembles	 with	 and	 without	 radar	 data	
assimilation.	



	 3)	ENSEMBLE	SIZE	COMPARISONS	
	
	 Three	multi-core	ensembles	 (i.e.,	 equal	membership	between	WRF-ARW	and	NMMB)	were	 compared	
where	 the	 only	 difference	 was	 the	 number	 of	 ensemble	 members.		 A	 six-member	 ensemble	 subset	 was	
compared	 to	 a	 ten-member	 ensemble	 subset	 and	 the	 full	 twenty-member	 multi-core	 ensemble	 with	 single	
physics	(per	core)	and	no	radar	data	assimilation.		This	experiment	was	performed	to	determine	the	impact	of	
increasing	 membership	 on	 the	 skill	 of	 forecasts	 from	 a	 convection-allowing	 ensemble.		In	 terms	 of	 the	
reflectivity	forecasts,	SFE	participants	rated	the	ensembles	of	varying	sizes	nearly	identical	during	SFE2016	(Fig.	
41).	
	

	
	
Figure	41	Distributions	of	 subjective	 ratings	 (1-10)	by	SFE	participants	of	probabilistic	 reflectivity	 forecasts	≥40	

dBZ	over	 a	mesoscale	 area	of	 interest	 for	 the	 forecast	 hours	 13-30	 for	mixed-core	CLUE	 ensembles	 of	
different	sizes	(i.e.,	6,	10,	and	20	members).	

	

	 Objective	verification	of	reflectivity	forecasts	for	the	CLUE	ensembles	of	different	sizes	generally	agrees	
with	the	subjective	evaluation	that	there	is	not	much	difference	among	the	forecasts.		In	terms	of	FSS	(Fig.	42)	
and	ROC	area	 (Fig.	 43),	 the	20-member	ensemble	only	has	 a	 slight	 statistical	 advantage	over	 the	10-member	
ensemble,	which	has	slightly	better	statistical	metrics	than	the	6-member	ensemble.		Give	the	similar	subjective	
ratings	among	the	ensembles	and	small	statistical	improvement	by	adding	additional	members;	a	thorough	cost-
benefit	analysis	is	needed	to	determine	optimal	ensemble	size	for	an	operational	convection-allowing	ensemble.	

	

	



	

Figure	42	Accumulated	fractions	skill	score	of	reflectivity	forecasts	≥40	dBZ	by	forecast	hour	(fh13-fh30)	during	
SFE2016	over	a	mesoscale	area	of	interest	for	the	CLUE	ensembles	of	different	sizes	(i.e.,	CLUE_M06	=	6	
members,	CLUE_M10	=	10	members,	and	CLUE_M20	=	20	members).	

	

Figure	43	Same	as	Fig.	42,	except	for	the	relative	operating	characteristic	(ROC)	curve	for	probabilistic	reflectivity	
forecasts	≥40	dBZ.	



	 4)	COMPARISON	TO	SSEO	AS	A	BASELINE	
	
	 Various	ensemble	 subsets	 from	 the	CLUE,	 including	a	multi-core	ensemble	and	 two	EnKF-based	WRF-
ARW	 ensembles,	 were	 compared	 to	 the	 SSEO	 during	 SFE2016.	 	 Given	 the	 utility	 and	 success	 of	 the	 SSEO	 in	
forecasting	hazardous	weather	since	2011,	 it	was	used	as	a	baseline	 to	assess	 the	performance	of	other	CAM	
ensembles	 with	 the	 goal	 of	 informing	 the	 design	 of	 the	 initial	 configuration	 of	 an	 operational	 convection-
allowing	 ensemble.	 	 The	 subjective	 component	 of	 this	 evaluation	 examined	 ensemble	 forecasts	 (ensemble	
maximum	and	neighborhood	probabilities)	of	hourly	maximum	 fields	 (HMFs)	of	UH,	updraft	 speed,	 and	10-m	
wind	 speed	 relative	 to	 LSRs	 of	 hail,	 wind,	 and	 tornadoes,	 as	well	 as	 ensemble	 neighborhood	 probabilities	 of	
reflectivity	≥40	dBZ.		For	the	subjective	rankings	of	HMFs	(Fig.	44),	the	SSEO	tended	to	have	fewer	lower-rated	
forecasts	than	the	other	ensembles	while	the	CAPS	EnKF	tended	to	have	fewer	higher-rated	forecasts	compared	
to	 the	other	 ensembles.	 	 For	 subjective	 ratings	 of	 probabilistic	 reflectivity	 forecasts	 (Fig.	 45),	 the	 10-member	
mixed-core	CLUE	ensemble	and	NCAR	EnKF	had	more	higher-rated	forecasts	than	the	SSEO	while	the	CAPS	EnKF	
remained	as	the	lowest	rated	ensemble.	
	

	
Figure	44	Distributions	of	subjective	ratings	(1-10)	by	SFE	participants	of	HMFs	over	a	mesoscale	area	of	interest	

for	the	forecast	hours	13-30	for	various	CLUE	ensembles	compared	to	the	SSEO.	

	

Figure	45	Distributions	of	 subjective	 ratings	 (1-10)	by	SFE	participants	of	probabilistic	 reflectivity	 forecasts	≥40	
dBZ	over	a	mesoscale	area	of	interest	for	the	forecast	hours	13-30	for	various	CLUE	ensembles	compared	
to	the	SSEO.	



	 The	objective	 verification	 results	of	 reflectivity	 forecasts	 from	 the	SSEO	do	not	necessarily	 agree	with	
subjective	ratings	of	SFE	participants.		The	FSS	(Fig.	46)	and	ROC	curves	(Fig.	47)	indicate	that	the	SSEO	produced	
more	skillful	probabilistic	 reflectivity	 forecasts	 than	 the	other	CLUE	ensembles	during	SFE2016.	 	The	objective	
results	do	agree,	however,	with	the	subjective	ratings	of	the	CAPS	EnKF	as	producing	the	least	skillful	reflectivity	
forecasts	of	the	CLUE	ensembles	examined.	 	Also	of	note,	the	multi-core	ensemble	(i.e.,	CLUE_M10)	produced	
slightly	better	statistical	results	than	the	single-core	ARW	EnKF	systems	(i.e.,	NCAR_EnKF	and	CAPS	EnKF).	

	

Figure	46	Accumulated	fractions	skill	score	of	reflectivity	forecasts	≥40	dBZ	by	forecast	hour	(fh01-fh24)	during	
SFE2016	over	a	mesoscale	area	of	interest	for	various	CLUE	ensembles	compared	to	the	SSEO.	

	

	

Figure	47	Same	as	Fig.	45,	except	for	the	relative	operating	characteristic	(ROC)	curve	for	probabilistic	reflectivity	
forecasts	≥40	dBZ.	



	 Perhaps	the	biggest	difference	in	ensemble	performance	can	be	seen	in	the	reliability	diagram	(Fig.	48).		
While	 still	 an	 over-forecast	 of	 reflectivity	 probabilities,	 the	 SSEO	 produces	 probabilistic	 reflectivity	 forecasts	
closer	 to	 perfect	 reliability	 than	 the	 other	 ensembles.	 	 The	 under-dispersiveness	 of	 the	 CLUE	 ensembles	 is	
evident	in	the	strong	over-forecasts	at	nearly	aLL	probability	thresholds	with	the	forecasts	typically	falling	below	
the	“no	skill”	line.		The	better	reliability	of	the	SSEO	reflectivity	forecasts	highlights	the	benefit	of	having	greater	
diversity	 in	 a	 convection-allowing	 ensemble	 through	 a	 multi-model,	 multi-initial	 condition,	 and	 multi-physics	
approach.	

	

Figure	48	Same	as	Fig.	47,	except	for	the	reliability	diagram	for	probabilistic	reflectivity	forecasts	≥40	dBZ.	

	

e)	Evaluation	of	Texas	Tech	University	Sensitivity	Products	
	
	 Ensemble	sensitivity	was	calculated	within	the	TTU	real	time	ensemble	system	for	each	0000	and	1200	
UTC	48-hr	forecast	initialization	during	SFE2-16.		A	response	function	location	was	chosen	during	the	experiment	
each	day	to	capture	the	expected	areas	of	severe	convection	within	Day	1	and	Day	2	forecasts.		Sensitivity	of	a	
number	of	severe	convective	parameters	within	the	response	location	was	calculated	hourly	in	real	time	within	
the	 12-48	 hr	 forecast	 window,	 plotted,	 and	 evaluated.	 	 These	 response	 functions	 included	 "magnitude"	
functions	defined	as	the	1-	and	6-hr	maximum	2-5	km	updraft	helicity,	surface	wind	speed,	and	simulated	lowest	
model	 level	 reflectivity.	 	 Response	 functions	 also	 included	 "coverage"	 functions	 defined	 as	 the	 1-	 and	 6-hr	
number	 of	 grid	 points	 exceeding	 40	 dBZ	 simulated	 lowest	 model	 level	 reflectivity,	 50	 m2/s2	 2-5	 km	 updraft	
helicity,	 and	 40	 mph	 surface	 wind	 speed.	 	 The	 sensitivity	 of	 these	 response	 functions	 were	 calculated	 with	
respect	 to	 300-hPa	 wind	 speed,	 500-hPa	 geopotential	 height,	 700-hPa	 temperature	 and	 dew	 point,	 850-hPa	



temperature,	surface	temperature	and	dew	point,	and	sea	level	pressure.		The	purpose	of	this	initial	evaluation	
was	to	learn	the	consistency	of	coherent	sensitivity	signals	across	many	cases	of	severe	convection,	understand	
the	 nature	 of	 these	 signals,	 and	 simulate	 how	 the	 sensitivity	 fields	 could	 be	 used	 operationally	 to	 improve	
forecasts.	
	 Sensitivity	patterns	nearly	always	showed	coherent	signals	aloft	with	respect	to	300-hPa	wind	speed	and	
500-hPa	geopotential	height,	and	tended	to	reveal	significant	sensitivity	to	the	positions	and	magnitudes	of	local	
minima	 and	maxima	 (for	 300-hPa	 wind	 speed)	 and	 ridges,	 troughs,	 and	 gradients	 (for	 500-hPa	 geopotential	
height)	 in	the	field.	 	Figure	49	shows	examples	of	these	typical	sensitivity	fields	for	two	 independent	cases.	 	A	
clear	positional	sensitivity	signal	exists	at	forecast	hour	18	in	the	case	initialized	on	May	7,	indicating	that	shifts	
in	the	jet	core	toward	the	northwest	(reduces	48-hr	maximum	6-hourly	2-5	km	updraft	helicity	because	higher	
wind	speed	values	would	exist	in	areas	of	negative	sensitivity)	or	southeast	(increases	48-hr	maximum	6-hourly	
2-5	 km	 updraft	 helicity	 because	 higher	 wind	 speed	 values	 would	 exist	 in	 areas	 of	 positive	 sensitivity)	 are	
associated	 with	 differences	 in	 the	 response	 function	 in	 the	 green	 box.	 	 The	 sensitivity	 pattern	 also	 shows	 a	
number	 of	 broad	 features	 in	 the	 case	 shown	 in	 Figure	 49	 initialized	 on	May	 3	 with	 respect	 to	 the	 500-hPa	
geopotential	 height	 field.	 	 The	 features	 shown	 in	 Figure	 49,	 and	 those	 frequently	 observed,	 generally	
propagated	 upstream	 backward	 in	 time	 in	 a	 coherent	 way,	 highlighting	 the	 dynamical	 relevance	 of	 the	 flow	
structures	(e.g.	a	500-hPa	trough)	to	which	they	were	attached	and	suggesting	they	weren't	present	as	a	result	
of	 statistical	 noise.	 	 Sensitivity	 fields	were,	 however,	much	 noisier	 closer	 to	 the	 surface,	 and	 rarely	 provided	
useful	signals	when	calculated	with	respect	to	temperature	or	dew	point	at	700-	and	850-hPa.		Sensitivity	to	sea	
level	pressure	was	slightly	more	useful,	but	not	nearly	as	much	as	the	500-	and	300-hPa	sensitivity	fields.			
	 Sensitivity	patterns	also	generally	spanned	the	entire	domain	as	shown	in	Figure	49.		This	highlights	the	
ability	of	 the	ensemble	 to	pick	out	 relationships	between	early	 forecast	variables	and	response	 functions	 that	
exhibit	no	direct	dynamical	link.		In	other	words,	features	typically	revealed	through	the	sensitivity	fields,	such	as	
those	described	above,	commonly	existed	downstream	of	the	response	function	location	at	a	time	prior	to	the	
valid	time	of	the	response	itself.		This	is	because	within	the	ensemble,	the	evolution	of	different	features	can	be	
related	to	the	same	processes	without	directly	affecting	each	other.				
	

	
Figure	49	Ensemble	 sensitivity	 of	 27-hr	 forecast	 number	of	 grid	points	 exceeding	40	dBZ	 simulated	 reflectivity	

over	the	last	6	hours	with	respect	to	500-hPa	geopotential	height	at	forecast	hour	12	(forecast	initialized	
00	UTC	May	3),	and	sensitivity	of	48-hr	forecast	maximum	6-hourly	2-5	km	updraft	helicity	with	respect	
to	300-hPa	wind	speed	at	 forecast	hour	18	 (forecast	 initialized	00	UTC	May	7).		The	green	box	 in	both	
plots	shows	the	response	function	location.	



	 The	 sensitivity	 fields	 associated	 with	 the	 different	 response	 functions	 over	 the	 spring	 forecasting	
experiment	 were	 generally	 different	 to	 a	 degree	 such	 that	 they	 suggested	 variations	 in	 early-forecast	 flow	
features	affected	forecasts	of	different	hazards	in	different	ways.		Figure	50	shows	an	extreme	example	of	this	
for	a	22-hr	 forecast	 for	which	 the	 response	 location	was	 located	over	 the	majority	of	Oklahoma	 (not	 shown).		
Sensitivity	with	respect	 to	3-hr	sea	 level	pressure	was	observed	to	have	very	different	signals	at	and	near	 the	
precursor	midlatitude	cyclone	 in	 the	Northern	Plains	 for	 coverage	 response	 functions	associated	with	updraft	
helicity,	surface	winds,	and	simulated	reflectivity.		In	particular,	the	position	of	the	cyclone	was	relevant	to	the	
coverage	 of	 high	 winds,	 while	 either	 positive	 (for	 updraft	 helicity)	 or	 negative	 (for	 simulated	 reflectivity)	
sensitivity	existed	over	much	of	the	area	occupied	by	the	cyclone,	suggesting	the	intensity	of	the	cyclone	itself	
was	more	 relevant	 to	 these	 response	 functions.	 	 Interestingly,	 the	opposite	 sign	of	 the	 sensitivity	pattern	 for	
reflectivity	and	updraft	helicity	indicates	a	change	in	the	intensity	of	the	cyclone	would	have	opposite	effects	on	
the	 coverage	 of	 these	 parameters.	 	 More	 commonly	 the	 differences	 in	 sensitivity	 patterns	 were	 not	 this	
extreme,	but	almost	always	showed	differences	 in	position	and	magnitude	that	 indicate	how	the	atmospheric	
state	affects	different	convective	hazards	in	different	ways.		There	were	numerous	events	when	the	sensitivity	
field	of	 certain	 response	 variables	was	near	 zero	 across	 the	domain,	 but	 showed	 clear,	 coherent	 features	 for	
other	response	functions.			
	

	
Figure	50	Ensemble	sensitivity	of	the	coverage	of	high	surface	wind	speed	(greater	than	40	mph),	high	simulated	

reflectivity	 (greater	 than	 40	 dBZ),	 and	 large	 updraft	 helicity	 (greater	 than	 50	m2/s2)	at	 22-h	 forecast	
time	with	respect	to	sea	 level	pressure	at	 forecast	hour	3.		Red	values	 indicate	positive	sensitivity,	grey	
values	 indicate	negative	sensitivity.		The	 response	 function	 location	at	22-hr	 forecast	 time	 is	not	show,	
but	exists	over	 the	majority	of	Oklahoma.		Note:	areas	of	white	within	areas	of	 large	sensitivity	values	
indicate	large	magnitudes	that	exceeded	the	maximum	values	within	the	chosen	range	of	plotted	colors.	

	
	 The	 initial	 conclusions	 from	 the	 evaluation	of	 the	 sensitivity	 products	 are	 that	wind	 and	 geopotential	
height	sensitivities	aloft	are	probably	useful	in	diagnosing	the	important	features	relevant	to	forecasts	of	severe	
convective	 hazards,	 while	 sensitivity	 with	 respect	 to	 moisture	 and	 temperature	 closer	 to	 the	 surface	 are	
probably	 less	 useful.	 	 Further,	 sensitivities	 of	 different	 convective	 hazards	 are	 able	 to	 discriminate	 different	
features	that	affect	the	hazards	in	different	ways.		Participant	feedback	from	the	experiment	was	in	agreement	
as	 to	 this	 usefulness	 of	 the	 sensitivity	 field,	 but	 forecasters	 overwhelmingly	 thought	 the	 subjective	
interpretation	 of	 these	 fields	 in	 real	 time	would	 not	 be	 feasible.	 	 As	 a	 result,	 these	 results	 have	 collectively	
driven	the	next	phase	 in	 this	work,	which	 is	 to	use	sensitivity	 to	objectively	modify	 the	ensemble	of	 forecasts	
(e.g.	 through	 choosing	 ensemble	 subsets)	 to	 provide	 a	 new	 forecast	 distribution	 with	 greater	 skill	 than	 the	
original	ensemble.	



4.		Summary	

	 The	 2016	 Spring	 Forecasting	 Experiment	 (SFE2016)	 was	 conducted	 at	 the	 NOAA	 Hazardous	Weather	
Testbed	 from	 2	 May	 –	 3	 June	 by	 the	 SPC	 and	 NSSL	 with	 participation	 from	 forecasters,	 researchers,	 and	
developers	from	around	the	world.		The	primary	theme	of	SFE2016	was	to	utilize	convection-allowing	model	and	
ensemble	 guidance	 in	 creating	 high-temporal	 resolution	 probabilistic	 forecasts	 of	 severe	 weather	 hazards,	
including	extension	into	the	Day	2	period.		Furthermore,	this	year	a	major	effort	was	made	to	coordinate	CAM-
based	ensemble	configurations	much	more	closely	than	in	previous	years,	which	was	done	in	the	context	of	the	
Community	Leveraged	Unified	Ensemble	(CLUE).	 	The	CLUE	allowed	us	to	conduct	several	experiments	geared	
toward	identifying	optimal	configuration	strategies	for	CAM-based	ensembles,	and	was	especially	well	timed	to	
help	 inform	 the	 design	 of	 the	 first	 operational	 CAM-based	 ensemble	 for	 the	 US,	 which	 is	 planned	 for	
implementation	by	NOAA’s	NCEP/EMC	in	the	upcoming	years.	

Several	preliminary	findings/accomplishments	from	SFE2016	are	listed	below:	

• Four-hour	outlooks	for	individual	severe	hazards	were	generated	using	first-guess	guidance	from	a	
temporally	disaggregated	full-period	outlook	created	with	calibrated	guidance	from	the	SREF	and	SSEO.	

• Severe	weather	isochrones	were	explored	to	add	enhanced	timing	information	of	the	severe	weather	
threat.	The	isochrones	were	drawn	to	delineate	the	start	time	of	the	4-h	time	window	with	the	highest	
severe	weather	probability.	

• The	CLUE	allowed	for	an	unprecedented	number	of	controlled	experiments	on	convection-allowing	
ensemble	design.	This	is	closely	aligned	with	UMAC	recommendations	for	evidence-based	model	
development	decision-making	and	utilization	of	a	unified	collaborative	strategy	that	better	leverages	
capabilities	of	the	larger	community.	

o The	multi-core	ensemble	strategy	provided	better	probabilistic	forecasts	for	severe	weather	
while	a	single-core	ARW	ensemble	verified	better	for	QPF	and	PQPF.	

o For	reflectivity	and	updraft	helicity	forecasts,	the	statistical	improvement	in	forecast	skill	by	
increasing	the	size	of	convection-allowing	ensemble	membership	was	relatively	small.	

o The	ensemble	comprised	of	members	with	radar	DA	verified	better	than	the	ensemble	without	
radar	DA	through	~15	hours	into	the	forecast	cycle.	

o The	SSEO	verified	objectively	as	well	as	or	better	than	any	CLUE	subset	for	probabilistic	
reflectivity	forecasts.		An	operational	version	of	the	SSEO	is	being	developed	by	EMC	in	FY17	to	
serve	as	a	baseline	for	future	CAM	ensemble	improvements.	

• Examined	and	documented	the	characteristics	of	three	algorithms	for	predicting	hail	size.		Post-
experiment	analysis	has	found	that	simply	using	UH	as	a	hail	predictor	may	still	have	the	most	skill,	
especially	if	hourly	minimum	UH	(i.e.,	anti-cyclonic	mesocyclones)	are	considered.	

• The	HRRRv2	generated	better	reflectivity	forecasts		than	the	NAMRR	both	subjectively	in	terms	of	
participant	ratings	and	objectively	through	neighborhood	verification.	

• The	variable-resolution	MPAS	runs	at	convection-allowing	scale	over	the	CONUS	were	explored	
subjectively	and	objectively	in	generating	realistic	simulated	storm	structures	out	to	Day	5.			



• The	sensitivities	of	different	microphysics	schemes	were	documented,	including	differences	in	cold	pool	
strengths	and	updraft	speeds..	

• Ensemble	sensitivity	analysis	revealed	that	the	wind	and	geopotential	height	sensitivities	aloft	are	the	
most	useful	for	diagnosing	features	relevant	to	forecasts	of	convective	hazards	(i.e.,	reflectivity,	updraft	
helicity,	and	10-m	wind	speed).	

	

The	CLUE	was	a	successful	venture	during	SFE2016	in	pulling	together	five	research	institutions	in	an	
unprecedented	effort	to	help	guide	NOAA’s	operational	modeling	efforts	at	the	convective	scale.		Eight	
unique,	controlled	experiments	were	designed	within	the	CLUE	framework	to	examine	issues	directly	
relevant	to	the	design	of	NOAA’s	future	operational	CAM-based	ensembles.		SFE2016	was	also	successful	in	
testing	new	forecast	products	and	other	modeling	systems	to	address	relevant	issues	related	to	the	
prediction	of	hazardous	convective	weather.		The	findings	and	questions	exposed	during	SFE2016	directly	
promote	continued	progress	to	improve	forecasting	of	severe	weather	in	support	of	the	NWS	Weather-
Ready	Nation	initiative.	 	
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APPENDIX	
	
Daily	activities	schedule	in	local	(CDT)	time	
	

Severe	Hazards	Desk	 Total	Severe	Desk	

0800	–	0845:		Evaluation	of	Experimental	Forecasts	&	Guidance	
Subjective	rating	relative	to	radar	evolution/characteristics,	warnings,	and	preliminary	reports	and	
objective	verification	using	preliminary	reports	and	MESH	

• Day	1	&	2	full-period	probabilistic	forecasts	of	
tornado,	wind,	and	hail	

• Day	1	4-h	period	forecasts	and	guidance	for	
tornado,	wind,	and	hail	
	

• Days	1,	2,	&	3	full-period	probabilistic	forecast	of	
total	severe	

• Day	1	4-h	period	probability	forecasts	and	
isochrones	

0845	–	1115:		Day	1	Convective	Outlook	Generation	
Hand	analysis	of	12Z	upper-air	maps	and	surface	charts	
• Day	1	full-period	probabilistic	forecasts	of	

tornado,	wind,	and	hail	valid	16-12Z	over	
mesoscale	area	of	interest	

• Day	1	4-h	probabilistic	forecasts	of	tornado,	
wind,	and	hail	valid	18-22	and	22-02Z*	
	

• Day	1	full-period	probabilistic	forecast	of	total	
severe	valid	16-12Z	over	mesoscale	area	

• Day	1	4-h	probabilistic	total	severe	forecasts	
valid	18-22,	20-00,	22-02,	00-04,	and	02-06Z.	

• Day	1	isochrones	for	4-h	periods	(every	2	h)	with	
highest	probability	of	total	severe*	

1115	–	1130:		Break	
Prepare	for	map	discussion	
	

1130	–	1200:		Map	Discussion	
Brief	discussion	of	today’s	forecast	challenges	and	products	
Highlight	findings	from	previous	days	
	

1200	–	1300:		Lunch	
Brief	EWP	participants	at	1245	if	needed	
	

1300	–	1345:		Day	2	Convective	Outlook	Generation	
• Day	2	full-period	probabilistic	forecasts	of	

tornado,	wind,	and	hail	valid	12-12Z	over	
mesoscale	area	of	interest	

• Day	2	or	Day	3	full-period	probabilistic	forecasts	
of	total	severe	valid	12-12Z	over	mesoscale	area	
of	interest	
	

1345	–	1515:	Scientific	Evaluations	
• CLUE	(4):	Radar	data	assimilation	
• CLUE	(8):	Ensemble	size	comparisons	
• CLUE:	SSEO	as	baseline	
• NAMRR	Nest,	HRRRv2,	HRRRv3	
• Ensemble	sensitivity	(TTU)	

	

• CLUE	(1,2):	Model	core	(det.	&	ens.)	
• CLUE	(6):	Radar	data	assimilation	approaches	
• CLUE	(7):	Microphysics	sensitivity	
• Explicit	hail	size	forecast	comparison	

	

1515	–	1600:		Short-term	Outlook	Update	
• Update	4-h	probabilistic	forecasts	of	tornado,	

wind,	and	hail	valid	22-02Z*	
	

• Update	4-h	probabilistic	forecasts	of	total	severe	
for	22-02,	00-04,	and	02-06Z.	

• Update	total	severe	isochrones	(22,	00,	&	02Z)*	
	
*	Denotes	forecasts	also	made	by	participants	using	the	PHI	tool	on	Chromebooks.	



	

	

	

49	

Table	A1	List	of	weekly	participants	(with	affiliation)	during	SFE2016.	

Week 1 Week 2 Week 3 Week 4 Week 5 
May 2-6 May 9-13 May 16-20 May 23-27 May 31-June 3 

Brian Ancell (TTU) Brian Ancell (TTU) 
Brock Burghardt 
(TTU) 

Brock Burghardt 
(TTU) Brian Ancell (TTU) 

Brock Burghardt 
(TTU) 

Brock Burghardt 
(TTU) Jack Kain (NSSL) 

Andy Taylor 
(WFO FGZ) 

Aaron Kennedy 
(UND) 

Mike Evans (WFO 
BGM) 

Bill Gallus (Iowa 
State) 

Tom Workhoff 
(FirstEnergy) 

Pete Wolf (WFO 
JAX) 

Brooke Hagenhoff 
(UND) 

Madalina Surcel 
(McGill Univ.) 

Brian Squitieri (Iowa 
State) 

Nathan Hitchens (Ball 
State) 

Nathan Wendt 
(SPC) 

Joshua Markel 
(UND) 

Greg Gallina (WPC) 
Sean Stelten (Iowa 
State) 

Lance Bosart 
(SUNYA) 

Mark Rodwell 
(ECMWF) 

Jingyu Wang 
(UND) 

Ben Albright 
(WPC/HMT) Jim Nelson (WPC) 

Kyle Pallozzi 
(SUNYA) Vince Agard (MIT) 

John Stoppkotte 
(WFO LBF) 

Mike McClure 
(WFO DVN) 

Marc Chenard 
(WPC) 

Bruno Ribeiro 
(SUNYA/Brazil) 

Aaron Johnson 
(WFO DDC) Binbin Zhou (EMC) 

Pat Spoden (WFO 
PAH) 

Stan Czyzyk (WFO 
VEF) 

Bill Martin (WFO 
GSP) 

Ivan Tsonevsky 
(ECMWF) Jeff Beck (GSD) 

Tom Holtquist 
(WFO MPX) 

Robert Hepper 
(SPC) Glen Romine (NCAR) Matt Pyle (EMC) 

Isidora Jankov 
(GSD) 

Stephen Bieda 
(WFO AMA) Jacob Carley (EMC) 

Corey Guastini 
(EMC) 

John Brown 
(GSD) Jeff Milne (SPC) 

Ryan Sobash 
(NCAR) Trevor Alcott (GSD) 

Curtis Alexander 
(GSD) Ed Szoke (GSD) 

Greg Thompson 
(NCAR) W-F 

Geoff Manikin 
(EMC) 

David Dowell (GSD) 
Th,F 

David Dowell (GSD) 
M,T 

Steve Willington 
(UK Met) 

Hugh Morrison 
(NCAR) W-F 

Terra Ladwig 
(GSD) 

Becky Adams-Selin 
(USAF) 

Anke Finnenkoetter 
(UK Met) 

Mark Bevan (UK 
Met) 

Jason Milbrandt 
(EC) W-F 

Eric James (GSD) 
Humphrey Lean (UK 
met) 

Humphrey Lean (UK 
Met) M 

Glenn White 
(EMC) 

Steve Willington 
(UK Met) 

Makenzie Krocak 
(OU) 

Anke Finnenkoetter 
(UK Met) F Tracey Dorian (EMC) 

David John 
Gagne (OU) 

Mark Conder (WFO 
LUB) 

 

Bill Skamarock 
(NCAR) W-F 

Pamela Eck 
(SUNYA) 

Nick Nauslar 
(SPC) 

Ron Miller (WFO 
OTX) 

 
Corey Potvin (NSSL) 

Paula Davidson 
(NWS) T,W 

Bruce Entwistle 
(AWC) 

Pam Heinselman 
(NSSL) 

	

	

	

	

	


