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1. Introduction 
 
 The 2022 Spring Forecasting Experiment (2022 SFE) was conducted from 2 May – 3 June by the 
Experimental Forecast Program (EFP) of the NOAA/Hazardous Weather Testbed (HWT), and was co-led 
by the NWS/Storm Prediction Center (SPC) and OAR/National Severe Storms Laboratory (NSSL).  
Additionally, important contributions of convection-allowing models (CAMs) were made by NOAA 
collaborators: Global Systems Laboratory (GSL), Environmental Modeling Center (EMC), and      
Geophysical Fluid Dynamics Laboratory (GFDL); as well as University of Oklahoma collaborators: the 
Multi-scale data Assimilation and Predictability (MAP) group and the Center for Analysis and Prediction 
of Storms (CAPS).  Participants included over 165 forecasters, researchers, model developers, university 
faculty, and graduate students from around the world (see Table A1 in the Appendix).  Uncertainties 
related to the COVID-19 pandemic precluded an in-person experiment for the third consecutive year, but 
to maintain momentum in key areas of convection-allowing model development, the HWT EFP once again 
conducted the 2022 SFE virtually, building upon lessons learned from the two previous virtual 
experiments. As in previous years, the 2022 SFE aimed to test emerging concepts and technologies 
designed to improve the prediction of hazardous convective weather, consistent with the Forecasting a 
Continuum of Environmental Threats (FACETs; Rothfusz et al. 2018) and Warn-on Forecast (WoF; 
Stensrud et al. 2009) visions. Below are goals from the 2022 HWT SFE for product and service 
improvements and applied science activities. 
 

Product and Service Improvements: 
● Assess the utility of machine-learning (ML) guidance coupled with a prototype Warn-on-Forecast 

system (WoFS) by issuing 1-h time window outlooks for individual severe hazards (tornado, hail, 
and wind) with and without access to the ML guidance, and surveying participants on the 
experience of using the ML guidance to issue these forecasts.  

● Explore the ability to provide enhanced information on the conditional intensity of tornado, wind, 
and hail events by delineating areas expected to follow “normal”, “hatched”, or “double-hatched” 
intensity distributions in Convective Outlooks covering Days 1, 2, & 3.  

● Test the utility of WoFS for updating coverage and conditional intensity full-period hazards 
forecasts valid 2100-1200 UTC. 

● Explore the application and utility of calibrated guidance products for issuing Day 1 hazards 
forecasts valid 1800-1200 UTC by generating forecasts with and without calibrated guidance.  

● Explore how WoFS and other CAMs can be used in watch-to-warning scale forecasting 
applications with an activity focused on using this guidance for generating Mesoscale Discussions 
(MDs).   

● Conduct a focus group activity to gain insight on the conditional intensity products.   
 

Applied Science Activities: 
● Compare various CAM ensemble prediction systems to identify strengths and weaknesses of 

different configuration strategies.  Most of these comparisons were conducted within the 
framework of the Community Leveraged Unified Ensemble discussed below.  Additional baseline 
comparisons were made using the operational High-Resolution Ensemble Forecast System version 
3 (HREFv3).   

● Compare and assess different machine-learning approaches for estimating the likelihood of wind 
damage reports being associated with gusts ≥ 50 knots. 
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● Compare and assess three machine-learning techniques for producing probabilistic convective 
mode guidance using High-Resolution Rapid Refresh (HRRR) forecasts as input.   

● Evaluate configurations of the limited area Finite Volume Cubed Sphere Model (FV3-LAM) with 
different data assimilation (DA) and physics suites. 

● Examine whether increasing horizontal grid-spacing from 3- to 1-km in Weather Research and 
Forecasting (WRF) model simulations provides benefits for tornado prediction and the strength 
of convective wind gusts.  

● Use an ensemble sensitivity-based ensemble subsetting approach to identify a small subset of 
members with the smallest errors out of 20 CLUE members and examine whether severe weather 
guidance derived from these subsets are improved relative to the full 20-member ensemble.  

● Compare and assess different versions of the 3D real-time mesoscale analysis (3D-RTMA) system 
that use different sources for the background first guess.      

● Test WoFS-based analyses of 10-m and 80-m as a potential verification source for severe winds.   
● To assess the possible impact of retiring the Short-Range Ensemble Forecast system (SREF), 

evaluate ensemble forecasts of environmental parameters, as well as calibrated thunder and 
severe probabilities, for the Global Ensemble Forecast System (GEFS) and SREF at Days 2 & 3 lead 
times.  

● Evaluate the utility of several methods, including machine-learning approaches, for producing 
calibrated hazard guidance. 

● Compare and assess the skill and utility of the primary deterministic CAMs provided by each SFE 
2022 collaborator.   

● Evaluate WoFS for applications to short-term severe weather product generation, and examine 
the impact of reducing the number of WoFS members, as well as different time-lagging 
approaches. 

● Explore the “Threats in Motion” concept applied to county-based watch guidance derived from 
an ML model that uses HREF fields as predictors. 

 
A suite of state-of-the-art experimental CAM guidance contributed by our large group of 

collaborators was critical to the 2022 SFE.  For the seventh consecutive year, these contributions were 
formally coordinated into a single ensemble framework called the Community Leveraged Unified 
Ensemble (CLUE; Clark et al. 2018).  The 2022 CLUE was constructed by having all groups coordinate as 
closely as possible on model specifications (e.g., version, grid-spacing, vertical levels, physics, etc.), 
domain, and post-processing so that the simulations contributed by each group could be used in 
controlled experiments.  This design allowed us to conduct several experiments to aid in identifying 
optimal configuration strategies for CAM-based ensembles.  The 2022 CLUE included 60 members using 
3-km grid-spacing (one member with 1-km grid spacing), which allowed for several unique experiments.  
The 2022 SFE activities also involved testing the WoFS for the sixth consecutive year.    

This document summarizes the activities, core interests, and preliminary findings of the 2022 SFE.  
More detailed information on the organizational structure and mission of the HWT, model and ensemble 
configurations, and information on various forecast tools and diagnostics can be found in the operations 
plan (https://hwt.nssl.noaa.gov/sfe/2022/docs/HWT_SFE2022_operations_plan.pdf). The remainder of 
this document is organized as follows: Section 2 provides an overview of the models and ensembles 
examined during the 2022 SFE along with a description of the daily activities, Section 3 reviews the 
preliminary findings of the 2022 SFE, and Section 4 contains a summary of these findings and some 
directions for future work. 
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2.  Description 
 
a) Experimental Models and Ensembles 
 
 A total of 89 unique CAMs were run for the 2022 SFE, of which 61 were a part of the CLUE system.  
Other CAMs outside of the CLUE were contributed by NSSL (WoFS) and EMC (HREFv3).  Forecasting 
activities during the 2022 SFE emphasized the use of CAM ensembles [i.e., HREF, Rapid Refresh 
Forecasting System (RRFS) prototypes, and WoFS] in generating experimental probabilistic forecasts of 
individual severe weather hazards.  Additionally, the 2022 CLUE configuration enabled numerous scientific 
evaluations focusing on model sensitivities and various ensemble configuration strategies. 

To put the volume of CAMs run for 2022 SFE into context, Figure 1 shows the number of CAMs 
run for SFEs since 2007, which was the first year CAM ensembles were contributed to the SFE.  In general, 
Figure 1 shows an increasing trend through 2019 and then stabilization around 90 CAMs. The 
consolidation of members into the CLUE has made this large volume of CAMs more manageable and has 
facilitated more controlled scientific comparisons.   
 

 

Figure 1 Number of CAMs run for SFEs since 2007.  The different colored stacked bars indicate the contributing 
agencies. 

 
More information on all of the modeling systems run for the 2022 SFE is given below.   
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 1) THE COMMUNITY LEVERAGED UNIFIED ENSEMBLE (CLUE) 
 
 The 2022 CLUE is a carefully designed ensemble with subsets of members contributed by NOAA 
groups at NSSL, GFDL, GSL, and EMC, and the non-NOAA groups of OU-MAP and CAPS.  The 60 CLUE 
members with 3-km grid-spacing have a CONUS domain, while the single 1-km member has a 2/3 CONUS 
domain. Depending on the CLUE subset, forecast lengths range from 30 to 126 h.  To ensure consistent 
post-processing, visualization, and verification, CLUE contributors output all model fields to the same grid 
using the Unified Post Processor (UPP; available at 
http://www.dtcenter.org/upp/users/downloads/index.php). All groups output a set of storm-based, 
hourly-maximum diagnostics including fields such as updraft helicity (UH) over various layers, updraft 
speed, and hail size, as well as standard CAM diagnostics like simulated reflectivity and precipitation.   A 
full list of members, output fields, and further details on ensemble configurations are provided in the      
2022 SFE operations plan.  Table 1 provides a summary of each CLUE subset.    
 
Table 1 Summary of the 11 unique subsets that comprise the 2022 CLUE. 

Clue Subset # of 
mems 

IC/LBC 
perts 

Mixed 
Physics 

Data 
Assimilation 

Dynamical 
Core 

Agency Init. Times 
(UTC) 

Forecast 
Length (h) 

Domain 

RRFSp1 1 none no Hybrid 3DEnVar FV3 EMC/GSL 00, 12 60 CONUS 
RRFSp2e 10 EnKF no Hybrid 3DEnVar FV3 EMC/GSL 00 36 CONUS 

MAP-VTS-rad 10 GFS, GEFS no GSI-EnVar FV3 OU-MAP 00 36 CONUS 
MAP-VTS-con 10 GFS, GEFS no GSI-EnVar FV3 OU-MAP 00 36 CONUS 
MAP-VTS-bot 10 GFS, GEFS no GSI-EnVar FV3 OU-MAP 00 36 CONUS 

NSSL-FV3-LAM 1 none no GFS cold start FV3 NSSL 00 60 CONUS 
NSSL3  1 none no GFS cold start ARW NSSL 00 30 CONUS 
NSSL1 1 none no GFS cold start ARW NSSL 00 30 2/3 CONUS 

GFDL-FV3 1 none no GFS cold start FV3 GFDL 00 126 CONUS 

RRFSp2eMP 10 EnKF yes Hybrid 3DEnVar FV3 CAPS 00 84 CONUS 
RRFSphys 6 none yes Hybrid 3DEnVar FV3 CAPS 00 36 CONUS 

 
 

The design of the 2022 CLUE allowed for several unique experiments that examined issues 
immediately relevant to the design of a NCEP/EMC operational CAM ensemble.  The primary groups of 
experiments are listed in Table 2.   
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Table 2 List of CLUE experiments for the 2022 SFE.  The CLUE subsets listed are from Table 1. 

Experiment 
Name 

Description CLUE subsets or 
3DRTMA version 

Valid Time 
Shifting Data 
Assimilation 

The OU MAP group ran ensembles with Valid Time Shifting (VTS) 
applied to radar data only, as well as radar data and 
conventional observations.  VTS is a cost-effective data 
assimilation approach that increases the membership (by a 
factor of three) for the background ensemble in convective 
scale, hybrid EnVar data assimilation. Goal: Assess the value of 
the VTS approaches applied to different sets of observations.  

MAP-VTS-rad & MAP-
VTS-bot 

RRFS 
Configuration 
Strategies 

Several different ensembles contributed by GSL, EMC, OU-MAP 
and CAPS were evaluated against HREFv3. Goal: Identify a 
strategy within the UFS framework (i.e., single-model, FV3-
LAM) that performs as good as or better than HREFv3, so that 
it can serve as a replacement in NCEP’s production suite. 

RRFSp2e, RRFSp2eMP, 
MAP-VTS-rad, & MAP-
VTS-bot 

FV3-LAM 
Physics 

CAPS ran several configurations of FV3-LAM that were identical 
except for their physics packages.  Goal: Assess systematic 
differences and performance characteristics among the 
different physics suites. 

RRFSphys 

FV3-LAM Data 
Assimilation 

EMC and GSL ran two deterministic RRFS prototypes.  Prototype 
1 used partially cycled (hourly) DA with GDAS (Global Data 
Assimilation System). Prototype 2 starts from GDAS, but then 
engages an hourly cycled storm scale ensemble EnKF-based 
system that informs hybrid deterministic analyses from which a 
deterministic forecast is launched. Goal: Determine the impact 
of the more sophisticated DA approach (similar to RAP/HRRR, 
but in UFS framework), with an emphasis on the first 12 h of 
the forecast.  

RRFSp1 & RRFSp2 

Enhanced 
Resolution 

NSSL ran two versions of WRF-ARW with 3- and 1-km grid-
spacing.  Goal: Examine grid-spacing sensitivity and assess 
whether enhanced resolution can provide improved severe 
weather guidance with particular attention given to depiction 
of storm structure and mode, as well as low-level rotation 
diagnostics.  

NSSL3 & NSSL1 

3D-RTMA 
Background 

Three hourly versions of 3D-RTMA were compared and each 
used a different background first-guess. Goal: Assess the 
impact of the background first guess on the final analysis. 

3DRTMAp1, 
3DRTMAp2, & 3DRTMA 
HRRR      

 
 

2) HIGH RESOLUTION ENSEMBLE FORECAST SYSTEM VERSION 3 (HREFv3)  
 
HREFv3 is a 10-member CAM ensemble that was implemented in operations 11 May 2021 and 

forecasts can be viewed at: http://www.spc.noaa.gov/exper/href/. HREFv3 replaced HREFv2.1.  The 
design of HREFv3 originated from the SSEO, which demonstrated skill for six years in the HWT and SPC 
prior to initial operational implementation in 2017.  In HREFv3, the HRW NMMB simulations have been 
replaced with HRW FV3. The member configuration diversity in HREFv3 has proven to be a very effective 
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configuration strategy, and it has consistently outperformed all other CAM ensembles examined in the 
HWT during the last several years.   
 
 3) NSSL CLOUD-BASED WARN-ON-FORECAST SYSTEM (CB-WOFS) 
 

The cloud-based Warn-on-Forecast System (cb-WoFS) is the next WoFS iteration, upgraded to use 
current technologies in containerization and cloud computing on the Microsoft Azure platform.  The cb-
WoFS is a rapidly-updating 36-member, 3-km grid-spacing WRF-based ensemble data assimilation and 
forecast system. The cb-WoFS is cycled every 15 minutes with forecasts initialized every 30 minutes and 
produces very short-range (0-6 h) probabilistic forecasts of individual thunderstorms and their associated 
hazards. The 900-km x 900-km daily WoFS domain targeted the primary region where severe weather was 
anticipated. 

The starting point for each day’s experiment was the High-Resolution Rapid Refresh Data 
Assimilation System (HRRRDAS) and the 1200 UTC HRRR forecast provided by NCO/GSL. A 1-h forecast 
from the 1400 UTC, 36-member, hourly-cycled HRRRDAS analysis provided the ICs for cb-WoFS.  Boundary 
conditions were perturbed HRRR forecasts, where perturbations from the 0600 UTC GEFS were added to 
the 1200 UTC HRRR forecasts.  The GEFS perturbations were scaled such that the ensemble spread at the 
lateral boundaries was similar to that provided previously by the experimental HRRR ensemble.  All cb-
WoFS forecasts were made available via the cb-WoFS Forecast Viewer at: 
https://cbwofs.nssl.noaa.gov/Forecast. Hereafter, cb-WoFS will simply be referred to as WoFS.  
 
b) Daily Activities  
 
 SFE 2022 activities were focused on forecasting severe convective weather and evaluating the 
previous day’s model forecasts.  A summary of evaluation activities and forecast products can be found 
below while a detailed schedule of daily activities is contained in the appendix (Table A2).  Note, when 
referencing the times in this document at which experiment activities occurred, we use Central Daylight 
Time (CDT), which is the time zone in which the HWT facility and SFE organizers are based.  However, it is 
worth noting that many of our virtual participants were located in different time zones as far away as the 
United Kingdom and Australia, so their local time was quite different. 
 

1) FORECAST AND MODEL EVALUATIONS 
 
 SFE 2022 featured a period of formal evaluations from 9:15-11am CDT Tuesday-Friday (except for 
Wednesday-Friday in the last week), for a total of 19 days of evaluation. The evaluations involved 
comparisons of different ensemble diagnostics, CLUE ensemble subsets, HREFv3, and WoFS.  Additionally, 
the evaluations of yesterday’s experimental forecasts products were conducted during this time, which 
involved comparing the experimental products to observed local storm reports (LSRs), NWS warnings, and 
Multi-Radar, Multi-Sensor (MRMS; Smith et al. 2016) radar reflectivity and maximum estimated size of 
hail (MESH). Participants were split into Groups A, B, C, and D, and each conducted a separate set of model 
evaluations.  Participants stayed in their initial group for two days before switching to a different group 
for the second two days (one day during the last week), to balance building familiarity with product 
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performance and exposure to multiple new CAMs and tools. The forecast product evaluations were similar 
across the groups, but the specific questions were dependent on which forecast products the participants 
issued, and some of the questions were randomized to reduce participant workload.  Participants worked 
on all the surveys individually, but typically stayed in the virtual meeting where SFE facilitators were 
available to answer any questions, troubleshoot issues, and discuss the subjective impressions of the day. 
After completing the surveys individually, participants were encouraged to discuss their thoughts about 
the products evaluated as a group.  
  
 2) EXPERIMENTAL FORECAST PRODUCTS 
 
 The experimental forecasts covered a limited-area domain typically encompassing the primary 
severe threat area with a domain based on existing SPC outlooks and/or where interesting convective 
forecast challenges were expected. There were two periods of experimental forecasting activities during 
SFE 2022.  The first occurred from 11:30am – 12:30pm CDT and focused on providing individual hazard 
guidance, as well as more precise information on the intensity of specific hazards.  The second forecasting 
period occurred from 2:15-4pm CDT and focused on short-term forecasting applications with WoFS.  
Additionally, a focus group activity was conducted to gain insight on the conditional intensity products.   
Participants were split into two groups for the forecasting and focus group activities: R2O & Innovation.   
 During the first forecasting period, the R2O group issued Day 1 Outlook hazard probabilities for 
the period 1800 – 1200 UTC. Within the R2O group, one set of participants used calibrated guidance 
products including ML-based algorithms, while the other group did not use calibrated guidance.  Both 
groups had access to various sets of numerical guidance such as the 1200 UTC initialized HREFv3, as well 
as numerous observational products (satellite, radar, mesoanalysis, surface observations, etc.). The 
individual hazard forecasts mimicked the SPC operational Day 1 & 2 Convective Outlooks by producing 
individual probabilistic coverage forecasts of large hail, damaging wind, and tornadoes within 25 miles 
(40 km) of a point. Additionally, both groups generated conditional intensity forecasts, which delineate 
areas that are expected to follow a “normal”, “hatched”, or “double-hatched” intensity distribution.  In 
plain language, “normal” refers to a typical severe weather day, where significant severe weather is 
unlikely, “hatched” areas indicate where significant severe weather is possible, and “double-hatched” 
areas indicate where high-impact significant severe weather is expected. These forecasts could also be 
thought of as indicating the proportion of observed severe reports that are expected to be significant, 
where going from “normal”, to “hatched”, to “double-hatched” would indicate an increasing proportion 
of significant-severe reports (see Fig. A3 of Appendix for more detailed information on each hazard). 

During the second forecasting period (2:15-4pm CDT), the R2O group conducted one forecasting 
activity from 2:15-3pm in which each participant issued their own Mesoscale Discussion (MD) Product 
using WoFS and other available CAM guidance within the SFE Drawing Tool, followed by a group 
discussion of the MDs.  Then, during the 3-4pm time period, the R2O group split into two sub-groups.  In 
one group, each participant used WoFS and other available guidance to update the Day 1 individual 
hazard coverage and conditional intensity forecasts that were issued earlier in the day for the period 2100 
– 1200 UTC. In the other sub-group, a focus group activity was conducted to gain insight on the 
conditional intensity products.    
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In the Innovation Group, during the 2:15-4pm CDT time period, participants generated severe 
hazard probabilities valid over 1-h time windows covering 2100-2200 and 2200-2300 UTC.  Two initial 
forecasts were generated during the 2:15-3:15pm period, and these forecasts were updated during the 
3:15-4pm time period.  For both sets of initial and final forecasts, two expert forecasters used WoFS, 
WoFS-based ML algorithms, and any other available forecast data, while two other expert forecasters 
used WoFS and any other available forecast data, but did not use WoFS-based ML algorithms.   
Additionally, two other groups of non-expert forecasters issued forecasts with and without the WoFS-
based ML algorithms similarly to the expert forecasters, which were combined into consensus forecasts. 
 
3. Preliminary Findings and Results 
 

a) Model Evaluation – Group A: Calibrated Guidance 
 
A1) Calibrated Guidance 
 
SFE participants evaluated a series of severe weather hazard guidance forecasts including those 

for tornadoes, severe winds (≥ 50 kts), and hail (≥ 1 in.).  A suite of forecasts was generated using 
variations of eight calibration methods (Table 3 and more details are included in the SFE 2022 operations 
plan) stemming from ML approaches or more traditional approaches based on severe weather hazard 
frequency given one or more storm or environmental parameters.  Products represented guidance 
periods of 24-hours based on CAM data at 00Z and valid at 12Z for Day 1 (the current day), Day 2, or Day 
3. Evaluation of guidance products was made relative to preliminary LSR observations that were available 
the day after an event, as well as WFO warning information and MRMS MESH.   

 
Table 3 Calibrated guidance methods specified by type (ML or traditional methods) and forecast type (tornado, T; 

hail, H; severe wind, W). 

Method Method Type Forecast Type Labels for plots 
GEFS-based ML ML T/H/W GEFS 
HREF/GEFS calibrated Traditional T/H/W HREF/GEFS 
Significant Tornado Parameter (STP)-
based calibrated 

Traditional T STP Cal {Circle, 
MCS-TF, Inflow} 

ML Random Forecast (RF) ML T/H/W ML RF 
Nadocast ML T Nadocast 
HREF/SREF and HREF/HREF Traditional T/H/W HREF/{SREF 

Ops,SREF 
Para,HREF} 

Flow-dependent training of RF 
models 

ML T/H/W {Non-, Explicitly, 
Implicitly} Flow 
Dependent 

HRRR-based ML Neural Network 
(NN), version 2 

ML T/H/W HRRR NN V2 
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 i) Aggregate Evaluation of Calibrated Tornado Guidance 
 

There was a total of 14 Day-1 calibrated tornado guidance products offered for daily evaluation 
during the SFE. Figure 2 provides a comparison of the aggregate subjective scores by evaluators across 
19 cases. Of the 14 Day-1 products, Nadocast had the highest overall mean rating (6.08), although seven 
other methods shared its median rating of 6.0. The next highest performing methods were both ML 
models, GEFS_D1 and Explicitly_Flow_Dependent with mean scores of 5.81 and 5.79 respectively. The 
highest scoring of the traditional calibration methods for Day 1 forecasts was STP_Cal_Inflow with a mean 
score of 5.68 followed closely by STP_Cal_MCS-TF at 5.62. The similar scores for the Inflow and MCS-TF 
methods suggests that incorporating storm mode (specifically identifying MCSs) in the calculation of 
tornado probabilities did not make a large difference. The STP_Cal_Circle method scored lower than the 
other STP-calibrated methods suggesting a slight benefit in incorporating STP values strictly from the 
“inflow” region rather than the full (circular) near-storm environment for this set of cases. 

Of the Day-1 guidance products, several were generated using variations of the same method. Of 
those guidance products that use HREF data for storm attribute fields (UH for tornado guidance), the 
current operational method that uses STP as a calibration agent provided by the SREF (HREF/SREF_Ops) 
was evaluated as superior with a mean score of 5.42 as compared to scores below 4.2 for the 
HREF/SREF_Para and HREF/HREF_Cal methods. From their comments, evaluators often preferred the 
HREF/SREF_Ops method because it did not over forecast as did the other two methods.   

The flow dependent method that explicitly trained a ML model for unique regimes of the large-
scale flow was evaluated with a mean score of 5.79, which is slightly higher than the method for which 
the model was trained without regard to the large-scale flow (mean of 5.42).   The implicit flow method 
scored the lowest with a mean score of 5.29. From evaluator comments, the explicit method tended to 
overall reduce the area and magnitude of forecast tornado probabilities, which, for these HWT cases, was 
a positive effect, especially for the non-event cases. 

A Day-1 product that was evaluated somewhat separately from the other products was 
generated with a ML neural network model that was trained based on deterministic HRRR forecasts. 
Version 2 of this ML model was trained with a few more predictors than version 1 and incorporates two 
node layers of much fewer nodes as compared to the one node layer design of version 1.  Figure 3 shows 
that version 2 (‘HRRR NN V2 D1’) is evaluated with a mean score of 5.09, which places the evaluated 
performance of this product roughly in the middle of the suite of Day-1 products.  Version 1 was not 
explicitly scored, but its performance was compared to version 2. The top violin plot of Fig. 3 has a mean 
score of 3.09 indicating that version 2 provided only slightly better forecasts than version 1. 

Of the Day-2 guidance methods, three of the methods had similar ratings while the HREF/GEFS 
stood out with noticeably lower mean and median ratings. Despite using a coarse global ensemble as 
input, the GEFS tornado guidance received relatively high ratings from Day 3 to Day 1.  In aggregate, the 
GEFS Day-3 product scored identically to the GEFS Day-2 product. Figure 4 reveals a high consistency 
among GEFS tornado forecasts primarily between days 1 and 2 such that for the respective violin plot 
there is a cluster of responses around a ‘4’ rating.  The other two violin plots show for GEFS tornado 
products a decrease in forecast consistency with longer lead time.  However, there is evidence of 
consistency even out to day 3 given that the mean score of the day 3 to day 1 forecasts is 3.53 (i.e., a 
score greater than ‘3’ indicates a degree of forecast consistency). 
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Figure 2 Violin plots showing aggregate (across 19 SFE cases) evaluation ratings along with mean (dashed white line) 

and median (white dot) values for 20 tornado calibration methods as listed. A rating of ‘10’ indicates a very 
good forecast.   



14 
 

 
Figure 3 Violin plots showing the distribution of rankings regarding the comparison between HRRR NN versions 1 and 

2 (i.e., V1 and V2) for tornadoes (red), severe hail (green), and severe wind (blue). Higher ratings indicate 
version 2 is much better. The mean, median, and number of forecasts (n) are shown for each distribution. 

 
Of the Day-2 guidance methods, three of the methods had similar ratings while the HREF/GEFS 

stood out with noticeably lower mean and median ratings. Despite using a coarse global ensemble as 
input, the GEFS tornado guidance received relatively high ratings from Day 3 to Day 1.  In aggregate, the 
GEFS Day-3 product scored identically to the GEFS Day-2 product. Figure 4 reveals a high consistency 
among GEFS tornado forecasts primarily between days 1 and 2 such that for the respective violin plot 
there is a cluster of responses around a ‘4’ rating.  The other two violin plots show for GEFS tornado 
products a decrease in forecast consistency with longer lead time.  However, there is evidence of 
consistency even out to day 3 given that the mean score of the day 3 to day 1 forecasts is 3.53 (i.e., a 
score greater than ‘3’ indicates a degree of forecast consistency). 



15 
 

 
Figure 4 Violin plots showing the distribution of rankings regarding the consistency of GEFS forecasts from day 3 to 2 

(D3-D2), day 3 to 1 (D3-D1), and day 2 to 1 (D2-D1) for tornadoes (red), severe hail (green), and severe wind 
(blue). Higher ratings indicate more consistent forecasts, and the mean, median, and number of forecasts 
(n) are shown for each case.  

 
Analyzing results separately for either more active events (e.g., an SPC outlook of 5% tornado 

probability or higher) or less active events (e.g., an SPC outlook less than 5%), there is a notable 
performance difference among the calibrated methods. Figure 5 shows results for six of the Day-1 
guidance methods. Nadocast and ML_RF score well for less active events while STP_MCS-TF and 
STP_inflow score nearly as well as Nadocast for more active days.  ML_RF was evaluated lower for more 
active days likely because it tended to over forecast tornado probabilities. 
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Figure 5 Bar graph representing mean scores of six calibrated tornado guidance methods for all 19 SFE cases (blue), 

and days with SPC maximum outlook tornado probability 2% or less (orange) or 5% and greater (green). 
 
 ii) Analysis of Tornado Evaluation Philosophy 
 
 Evaluators were asked a series of questions as to what factors they considered most important in 
the process of scoring a tornado forecast. Overall, participants ranked high probability of detection (POD) 
within the highest probability contours (i.e., greater than 5%) as the most important factor in their ratings 
(mean ranking 2.24 out of 5; Fig. 6), followed by low false alarm ratio (FAR) for probabilities greater than 
5% (mean ranking 2.75) and correct maximum tornado probabilities (mean ranking 2.83). Meanwhile, the 
two least important factors were low FAR (mean ranking 4.02) and high POD (mean ranking 3.17) for the 
lowest probabilities (5% and less). These results suggest participants emphasized the correctness of the 
highest tornado probabilities in their ratings. Participants were less concerned about large FAR in the 
lowest probabilities but, interestingly, were more split on the importance of POD in the low probability 
areas, indicated by a bimodal distribution of rankings (second violin from top in Fig. 6). 
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Figure 6 Responses for a list of questions related to tornado forecast evaluation philosophy (see text). 
 

One factor that might explain this result is that different evaluators had different perspectives on 
how much a forecast should be rated on skill (i.e., based on official observations) versus usefulness (i.e., 
how a forecast represents the possibility of severe weather occurrence). An example of this dilemma is 
shown in Fig. 7, which depicts the HRRR_NN version 1 and 2 calibrated 24-hr forecasts at initial time 12Z 
on 5/18/22.  No official tornado observations were recorded, but a series of NWS tornado warnings were 
issued for southeast Kentucky during the period. If evaluators scored strictly based on skill, they would 
favor version 1, which forecast no tornadoes; however, they would favor version 2 for usefulness as a 
forecast aid because it communicates some possibility of tornado occurrence that a forecaster should 
take into account when assessing the level of a severe weather threat.  Consideration will be given in 
future SFEs to allow for scoring forecasts in consideration of both “skill” and “usefulness”. 
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Figure 7 Plots of 24-hr tornado probability for 5/18/22 using HRRR_NN calibrated method version 1 (top) and version 

2 (bottom).  No tornadoes observed.  Red polygons indicate NWS tornado warnings. 
 
 iii) Aggregate Evaluation of Calibrated Hail Guidance 
 

Fifteen calibrated hail guidance products were tested in the 2022 SFE. These products were 
created using different methods and underlying dynamical models, and they forecast for lead times 
ranging from 1 to 3 days (Table 3).  

As with tornadoes, the GEFS products had the longest lead times, with 1-, 2-, and 3-day forecasts 
evaluated. Participants observed a general trend toward increasing skill as lead time decreased, both in 
their written comments and numerical ratings. The day 3, day 2, and day 1 GEFS hail forecasts (GEFS D3, 
GEFS D2, and GEFS D1) received mean ratings of 5.97, 6.25, and 6.42, respectively (orange violins in Fig. 
8). One characteristic of all three forecasts was their tendency to cover broad areas with non-zero 
probabilities. Indeed, participants found the locations highlighted by the three forecasts to be very 
consistent (with median subjective consistency ratings of 4 out of 5 for days 3 to 2, 3 to 1, and 2 to 1; 
green violins in Fig. 4) but noted also as lead time decreased that the forecast probability magnitudes 
tended to be appropriately adjusted, either higher or lower as consistent with the increase or waning of 
the forecasted favorability of severe weather over time. The day 1 and 2 GEFS forecasts performed 
particularly well relative to the other guidance products, especially considering the coarse global 
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ensemble input (Fig. 8). With that said, some participants felt that the GEFS products covered too large of 
areas, particularly at shorter lead times.  

Two other hail forecasting methods were evaluated out to 2-day lead times: the HREF/GEFS 
calibrated product and the ML RF. Both of these considered storm attribute information from the 12z 
initialization of the HREF. In their written comments, participants noted that the probabilities from the 
day 2 ML RF (ML RF D2) tended to be higher and cover a larger area than those from the day 2 HREF/GEFS 
product (HREF/GEFS Cal D2), giving the ML RF D2 greater probability of detection (POD) but also greater 
false alarm. While participants found both methods useful, in general there was a slight preference for 
ML RF D2, with participants preferring its POD and areas of maximum probabilities. This finding was 
reflected in the subjective ratings; both methods received a median rating of 6, but the ML RF D2 had a 
greater mean rating (6.06) than HREF/GEFS Cal D2 (5.42; Fig. 8).  
 

 
Figure 8 As in Figure 2 but for the 15 calibrated hail guidance methods evaluated.  



20 
 

As with the GEFS forecasts, participants found the HREF/GEFS D2 and ML RF D2 products to be 
consistent with their day-1-lead-time analogues (i.e., HREF/GEFS D1 and ML RF D1, respectively), with the 
day 1 forecasts having similar characteristics but slightly greater skill. The mean ratings for HREF/GEFS Cal 
D1 (5.83; third dark blue violin in Fig. 8) and ML RF D1 (6.38; fourth dark blue violin in Fig. 8) were higher 
than their corresponding day 2 ratings. 

Other day-1 lead-time hail products based on HREF storm attributes were evaluated in different 
survey subsections. The current non-machine-learning operational standard, HREF/SREF Ops, received the 
lowest mean (4.43) and median (4) ratings of all hail methods evaluated (Fig. 8), with participants noting 
its tendency to under-forecast and have a low POD. However, recalibrating the product’s exceedance 
thresholds produced a substantially better forecast (HREF/SREF Para, mean rating 5.91). Interestingly, 
using the GEFS (HREF/GEFS Cal D1; mean rating 5.83), SREF (HREF/SREF Para; mean rating 5.91), and HREF 
(HREF/HREF Cal; mean rating 5.99) ensembles for the method’s environmental information did not 
produce substantially different ratings. Participants felt those three forecasts (i.e., HREF/GEFS Cal D1, 
HREF/SREF Para, and HREF/HREF Cal) tended to be quite similar with only minor differences, indicating 
that the HREF storm-attribute inputs tend to dominate the guidance products.   

Calibrating the HREF/GEFS product based on MRMS MESH instead of observed hail reports 
resulted in forecasts with larger probability magnitudes and areal coverage, which gave better POD but 
worse false alarm. In general participants found value from HREF/GEFS MESH (mean rating 5.99; indigo 
violin in Fig. 8) and especially liked the greater areal coverage of HREF/GEFS MESH’s probabilities, 
although they generally felt the probability magnitudes were too high. Incidentally, participants felt the 
same way about the practically perfect MESH product (not formally rated). Overall, calibrating the 
HREF/GEFS product based on MESH was found to be useful and a promising idea for future development, 
especially if over-forecasting bias could be reduced.  

To test if the characteristics of the large-scale flow could be used to improve forecast guidance, 
three flow-dependent methods were evaluated. In both their ratings and comments, participants 
expressed a slight preference for the implicitly flow dependent guidance (median 6, mean 5.75), as it 
generally highlighted the best areas and probability magnitudes of the three methods. However, 
participants wrote that the non-flow dependent forecasts (median 6, mean 5.36) tended to be 
qualitatively very similar to the implicitly flow dependent forecasts on many days. Meanwhile, the 
explicitly flow dependent forecasts generally were generally inferior (median 5, mean 5.10). Participants 
felt all three products tended to under-forecast probability magnitudes while producing non-zero 
probability areas that were relatively large, such that the forecasts often appeared overly smoothed, 
despite no spatial smoothing being applied.   

Finally, a new neural network-based product using the HRRR was evaluated (HRRR NN). Compared 
to an earlier version (i.e., version 1), participants found the new version (i.e., HRRR NN or version 2) tended 
to produce higher probabilities, giving it better POD than version 1. When asked to rate how version 2 
compared to version 1, participants gave a median rating of 4.0 out of 5.0 (green violin in Fig. 3), showing 
a preference for version 2. Indeed, version 2 received a mean rating of 6.09 (green violin in Fig. 8), one of 
only five hail methods to receive a mean rating above 6.0. Compared to other top-performing hail 
methods, HRRR NN received more ratings of 9s and 10s, but also more 1s and 2s (Fig. 8). It is possible that 
the greater variance in its ratings is at least partially due to its reliance on a single model (the HRRR) as 
opposed to an ensemble (e.g., the GEFS or HREF) for its forecast inputs.  



21 
 

Overall, participants generally found all of the hail products useful, if imperfect, and noted that 
differences between methods could be valuable from a forecasting perspective. Finally, participants felt 
that most products could benefit from additional calibration to improve their usefulness. 
 
 iv) Aggregate Evaluation of Calibrated Wind Guidance 
 

Fourteen calibrated guidance products were evaluated for severe wind. These included all 
methods evaluated for severe hail except the HREF/GEFS MESH.  
 As with severe hail, the GEFS wind forecasts were found to be relatively consistent from day 3 to 
day 1 lead times, with median consistency ratings of 4 out of 5 for days 3 to 2, 3 to 1, and 2 to 1 (blue 
violins in Fig. 4). Participants noted the three GEFS forecasts generally highlighted the same, relatively 
broad, areas with their nonzero probabilities, but trended toward higher and more accurate probability 
magnitudes at shorter lead times. As a result, the day 1 GEFS wind forecasts were rated the highest, on 
average (mean rating 5.78; Fig. 9), followed by the day 2 (mean rating 5.58) and day 3 (mean rating 5.17) 
forecasts.  

The HREF/GEFS Cal and ML RF methods also provided good consistency between their day 2 and 
day 1 wind forecasts, with both methods’ forecasts having similar characteristics and covering similar 
areas on days 2 and 1. However, as expected, both methods tended to be sharper on day 1. These sharper 
probabilities led to a slight increase in mean rating from day 2 to day 1 for HREF/GEFS Cal (mean rating 
5.65 for day 2, 5.82 for day 1; Fig. 9) but not for ML RF (mean rating of 6.12 for both days), although ML 
RF D1 had a higher median rating (7) than ML RF D2 (6). Participants explained that, while they liked the 
areas outlined by the ML RF method, ML RF tended to over-forecast probability magnitudes, so the 
increased sharpness from day 2 to day 1 did not always lead to subjectively better forecasts. Indeed, ML 
RF D1 received more ratings of 8s, 9s, and 10s than ML RF D2, but also more 1s and 2s (Fig. 9). Despite its 
over-forecasting bias, participants expressed a slight preference for ML RF compared to HREF/GEFS Cal at 
both lead times due to its better areal coverage, and the ML RF D2 and ML RF D1 products received the 
highest mean ratings of all wind products evaluated. 

Conversely, the current operational standard product, HREF/SREF Ops, received the lowest mean 
rating (4.35; Fig. 9) of the calibrated wind products evaluated because of its strong under-forecasting bias. 
However, applying a new calibration and updated algorithm to the product (HREF/SREF Para) resulted in 
a substantially improved forecast (mean rating 5.86) that was among the top-performing methods for 
severe wind prediction. Participants noted only minor differences in the forecast when the method’s 
environmental information came from GEFS, SREF, or HREF, as the mean ratings for HREF/GEFS Cal D1 
(5.82), HREF/SREF Para (5.86), and HREF/HREF Cal (5.74) were all similar. 

When evaluating the flow-dependent severe wind products, participants generally found only 
minor differences between the non-, explicitly-, and implicitly-flow dependent forecasts (mean ratings of 
5.22, 5.17, 5.16, respectively; Fig. 9). Like the flow-dependent hail products, all flow-dependent wind 
products tended to have broad areas of relatively low probabilities, a characteristic that led to mixed 
reviews. In some cases—particularly for more widespread wind events—participants liked the broad-
coverage, low-magnitude probabilities, finding them easier to interpret than other wind guidance 
products. However, in cases with more localized threat areas, participants found the probabilities too 
diffuse to give meaningful guidance. Despite the products’ similar tendencies, at least one self-identified 
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forecaster enjoyed seeing the output from the multiple methods. The forecaster felt the differences 
between products helped show the importance of the large-scale flow characteristics (e.g., magnitude, 
orientation) to the day’s severe weather threat.  
 The new version of HRRR NN (version 2) was among the top-performing methods for severe wind, 
receiving a mean rating of 6.07 (green violin, Fig. 9). Compared to version 1, participants observed that 
version 2 tended to have higher probabilities that encompassed slightly larger areas. Although many 
participants preferred the larger highlighted areas, many felt that version 2’s probability magnitudes were 
too high. Consequently, when asked to rate version 2 compared to version 1, participants gave a mean 
rating of 3.07 (median of 3) out of 5 with a tri-modal distribution (blue violin in Fig. 3), indicating no clear 
overall preference for one version or another.  
 Overall, participants felt that most of the wind guidance products had utility but could benefit 
from additional calibration, with most products having too high of magnitudes. Nevertheless, the 
highlighted threat areas were commonly cited as being very useful, and the consistency of the products 
out to multiple day lead times was seen as encouraging. 
 

 
Figure 9 As in Fig. 2 but for the 14 calibrated wind guidance methods evaluated.  
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b) Model Evaluations – Group B: Deterministic CAMs 
 
 B1) Deterministic Flagships 
 
 The first evaluation in the B group focused on the “Deterministic Flagships” comparison, which 
consists of cutting-edge model guidance contributed by various agencies. The guidance provided herein 
entails models with different dynamical cores, data assimilation strategies, physics parameterizations, and 
whether they are nested or global configurations. As such, the main goal of this comparison is to see which 
configuration is performing best rather than to do a specific comparison between models with slightly 
different configuration strategies. Models contributed here frequently have been iterated on by their 
agencies, and are relatively advanced in their development. 
 For the first time, these models were evaluated blindly; participants were not able to see which 
model was producing which images. In addition to being blinded, the location of each particular model 
was randomized each day, so participants could not count on a model being in the same panel      day-to-
day. Models were unblinded during the discussion of the results, after the surveys were submitted. 
Participants compared the reflectivity and 2–5 km updraft helicity (UH) from each configuration, along 
with one of the following environmental variables: 2-m temperature, 2-m dewpoint, and surface-based 
convective available potential energy (SBCAPE). The evaluation strategy also differed from prior years in 
that rankings were used rather than 1-10 ratings, forcing participants to distinguish between model 
performance. Models were ranked from best (i.e., ranking of 1) to worst (i.e., ranking of 5). One limitation 
to the ranking methodology, which is more robust than unlabeled 1-10 scales, is that all models must be 
present for the rankings to be compared. As such, we had 12 cases out of 19 that met this criterion, with 
92 responses from participants across these cases. Participants were asked to consider forecast hours 13–
36 in their evaluations, corresponding with 1200–1200 UTC. 
 

 
Figure 10 Reflectivity and UH rankings for models in the Deterministic Flagship comparison. Dashed lines indicate the 

mean ranking (lower numbers are better). 
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Rankings for the reflectivity and UH show two groupings of model performance (Fig. 10). The 
HRRRv4, RRFSp1, and RRFSp2 Control were ranked relatively similarly with regards to the mean ranking, 
followed by the NSSL FV3-LAM, and then the GFDL FV3. The HRRRv4 was most frequently ranked first, 
followed by the RRFSp1 and the RRFSp2 Control. The RRFS models were most frequently rated second or 
third, leading the RRFSp1 to a slightly higher overall mean ranking than the HRRRv4, though these 
differences are likely not significant. The NSSL FV3-LAM was most frequently rated fourth or fifth, and the 
GFDL FV3 was most frequently rated last. When asked what characteristics of the simulated reflectivity 
and UH forecasts were most important to the participants when ranking the models, participants broadly 
cited forecasting challenges such as the convective initiation, progression of storms, location of storms, 
intensity of storms. In a word cloud of participant responses, timing, location, and storm mode showed 
up frequently. Convective coverage also came up in some participant responses. 

 

 
Figure 11 Rankings of environment for the Deterministic Flagship models. Rankings were completed for (a) 2-m 

Temperature, (b), 2-m Dewpoint, and (c) SBCAPE. Dashed lines indicate the mean ranking for the model in 
question (lower numbers are better), and the dashed blue lines in (a) indicate that the RRFSp1 and the 
RRFSp2 Control had the same mean ranking. Note that the y-axes on these comparisons are scaled to each 
individual subplot. 
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Rankings for the environmental fields followed similar patterns to the reflectivity and UH rankings, 
although the HRRRv4 easily received the highest mean ranking in temperature and SBCAPE (Fig. 11a,c). 
The HRRRv4 was most frequently rated the highest of all of the models considered in those fields, while 
the RRFSp2 Control was most frequently ranked first for dewpoint (Fig. 11b). Overall, the pattern of the 
HRRRv4, RRFSp1, and RRFSp2 Control ranking the best continued for all environmental fields considered, 
followed by the GFDL FV3 and the NSSL FV3-LAM. The GFDL FV3 placed fourth in terms of highest ranking 
for temperature, but was most frequently rated last for dewpoint and SBCAPE. For temperature, the NSSL 
FV3-LAM was most frequently ranked last.  When evaluating the 2-m temperature, participants looked 
more closely at boundaries, gradients, and mesoscale areas of bias in making their rankings. Cold pools 
were also considered. Similar considerations applied for the 2-m dewpoint and the SBCAPE, although the 
shape and orientation of boundaries were specifically cited with regards to any drylines that may have 
been in the SFE domain of interest. Horizontal distribution of large areas of SBCAPE (e.g., warm sectors) 
also played a role for some participants assigned the SBCAPE field. 
 

 
Figure 12 Subjective rating scores for the highest-ranking model in each comparison. Medians are shown by the 

brown line; brown diamonds indicate the mean. The sample size is listed at the bottom of each subplot. 
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Finally, participants were asked to rate their highest-ranked model on a scale of 1–10 for both the 
UH and reflectivity fields and their environmental fields of choice, to indicate how the models were 
performing on a given day (Fig. 12). Note that their best-performing model for reflectivity/UH and the 
environmental field could differ. Results show that the best performing model was frequently ranked 
similarly, with median ratings around 7 or 8 out of 10 in most cases. Since the environmental fields have 
quite small sample sizes, strong conclusions cannot be drawn from them. However, looking at the 
distributions of the HRRRv4, RRFSp1, and RRFSp2 Control members in the reflectivity and UH ratings show 
very similar distributions, indicating very similar performance on days where this set of models are 
performing their best. 

 
B2) RRFS vs. HRRR 
 
Our next comparison in the B group looked at an in-depth comparison between the HRRRv4 

(currently operational), and the RRFSp2 Control (a candidate for future HRRR replacement under Unified 
Forecasting System efforts). This comparison was not blinded, so participants knew which model guidance 
that they were considering. During this survey, participants were asked to select which model performed 
best for a variety of fields, or if they performed about the same. Participants were asked to select two 
storm attribute fields out of a possible five to evaluate, were next randomly assigned one of (a) 2-m 
temperature, 2-m dewpoint, or SBCAPE, and finally were randomly assigned two out of a possible five 
additional environmental fields to comment upon differences for. The final five environmental fields did 
not have corresponding observations, so participants were asked solely to remark upon the differences 
between the fields. 

 

 
Figure 13 Number of times each storm attribute field was selected for evaluation. Note: 0-3 km UH was unavailable 

for the first few weeks of SFE 2022. 
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Participants most frequently selected the reflectivity/2–5 km UH and 10-m wind speed to 
evaluate, although the updraft speed was a close third (Fig. 13). The 10-m wind gusts, although only 
evaluated fourth most often, were frequently a topic of discussion after completion of the survey. Storm 
attribute field performance varied regarding which model was selected as the best performer (Fig. 14). 
For simulated reflectivity and updraft speed, the HRRRv4 was selected as the better-performing model 
more frequently than the RRFSp2 Control. However, the 10-m wind speeds and the 0–3 km UH were 
frequently better in the RRFSp2 Control relative to the HRRRv4. The 10-m wind gust performance was 
similar across all categories. When commenting on the 2–5 km UH and simulated reflectivity, participants 
frequently noted different performance at different time periods, as exemplified by comments such as: 
“HRRR did better first half of the period by far, but RRFS did better with the bigger event, derecho later in 
period”. Comments such as these highlight the necessity of objective verification across the entire 
convective day, which is time-prohibitive to do subjectively in the context of the SFE. Participants 
frequently commented that the 10-m wind speed was too low, particularly in the HRRRv4. The 10-m wind 
gust product, which is not constrained by having to meet a reflectivity criterion, was noted by the 
participants to show swaths of strong wind gusts in the RRFSp2 Control that appeared to be synoptically 
driven rather than associated with convection. However, during one discussion session, a WFO forecaster 
mentioned that it wouldn’t necessarily be bad for the model to show high synoptic gusts, as they currently 
faced a forecast challenge in getting good guidance for gusty winds that were not associated with 
convection.  

 

 
Figure 14 Answers to the question, “Which model performed best for this field?”, in which participants were asked to 

select at least two of the five fields presented to evaluate. 
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Participants were also asked, “How important does this field seem to be to the evolution of severe 
weather on <date>?” This question checked the assumptions that we utilized regarding the importance 
of different storm attribute variables on forecasting severe convective storms. Responses here were 
normalized based on the number of responses received for each variable (Fig. 15). Simulated reflectivity 
and 2–5 km UH were most frequently rated as either “Very important” or “Extremely important”, and 
were by far the most frequently selected as “Extremely important”. Updraft speed and 10-m wind speed 
were most frequently rated moderately important. The 10-m wind gusts were most frequently rated “Very 
important”, and 0-3 km UH was most frequently rated “Slightly important”. These findings may be linked 
to the type of severe convective weather that took place during SFE 2022. Severe wind was one of the 
most frequent hazards, while tornadoes were relatively infrequent. 
 

 
Figure 15 Participant indications of how important particular storm-attribute fields were to the forecast of severe 

convection on the day they were evaluating. Responses are normalized by the total amount of responses for 
each given variable as shown in Fig. 13.  

 

 
Figure 16 As in Fig. 14, but with environmental fields that were randomly assigned. 
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Participants next evaluated a randomly selected environmental field. Fields were evenly assigned 
between 2-m temperature, 2-m dewpoint, and SBCAPE. For temperature and CAPE, the most frequent 
response from participants was that the HRRRv4 and the RRFSp2 Control performed about the same (Fig. 
16). For dewpoint, however, the RRFSp2 Control being better was the most frequent response. Overall, 
the HRRRv4 appears to perform better with regards to the 2-m temperature and the SBCAPE, but the 
RRFSp2 Control handles the 2-m dewpoints better than the HRRRv4. Participant comments surrounding 
the temperature spoke to the placement and intensity of boundaries and cold pools, and some 
participants focused in on the reasoning why specific biases may be preferred: “The RRFSp2 appeared 
slightly closer to true values but given it was cool biased compared to HRRRv4 warm bias, I preferred the 
warmer solution given the impacts of the day may be made more significant with a warmer boundary 
layer.” Participants frequently commented on a dry bias in the HRRRv4’s 2-m dewpoints, and the 
comments surrounding the CAPE showed no clear trends. Environmental fields were generally rated as 
less important to the day’s forecast of severe convection (Fig. 17) relative to the storm attribute fields, 
but overall, the SBCAPE was indicated as the most important, followed by the dewpoint, and then the 
temperature. 
 

 
Figure 17 As in Fig. 15, but for environmental attributes. Responses are not normalized due to the evenly distributed 

random assignment of environmental variables to participants. 
 

Finally, participants were asked to evaluate fields that were new to formal subjective evaluation, 
and were asked to comment on differences between three of the following fields that were randomly 
assigned: 500 mb height/wind, 700 mb height/wind, 850 mb height/wind, MUCAPE, and MLCAPE. 
Comments on the 500 mb fields were frequently that the models were similar, but for some cases 
participants were able to highlight details of the evolution of the upper-air fields. One such example reads, 
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“HRRRv4 had a weaker trough with the main core of winds mainly centered over AMA. RRFSp2 has a 
stronger trough with a wind core extending south of Lubbock. This also might explain the resulting 
differences in convective products.” Case-based analysis of these upper-air CAM fields can help developers 
identify systematic differences that may be linked to sensible weather. At 700 mb, participants frequently 
noted that the RRFSp2 Control had stronger winds than the HRRRv4. This comment was less frequent at 
850 mb relative to 700 mb, but participants also noticed more small perturbations in the 850 mb height 
lines in the RRFSp2 Control. MUCAPE magnitudes were a mixed bag, although the spatial extent was not 
as widespread in the RRFS according to some participants. MLCAPE, however, almost always was noted 
to be higher in the HRRRv4 relative to the RRFSp2 Control. This impression was conveyed by participants 
commenting on not only higher maximum values, but also broader areal coverage of large CAPE. 

 
B3) Data Assimilation Strategies 
 
The third comparison in the B group evaluations looked at the impact of data assimilation 

strategies in five deterministic models, focusing on the first twelve hours of the forecast. The domain for 
this comparison was shifted relative to the other comparisons, reverting to the previous day’s domain to 
ensure that convection was captured within the area being evaluated. Participants answered questions 
about storm structure, retention, and location using the simulated reflectivity and 2–5 km UH fields at 
forecast hours 1 and 6, and rated one of three environmental fields (2-m temperature, 2-m dewpoint, and 
SBCAPE) on a scale of 1 (Very Poor) to 10 (Very Good). Participants were also asked to provide comments 
twice; first on the storm structure, location, and retention in the first 12 h of these runs, and then on the 
environmental field that they were assigned. Responses shown herein encompass the 15 cases where all 
model data was available; RRFSp2 control runs were unavailable on four days. Thus, 107 participant 
responses were collected for all models. 

 

 
Figure 18 Participant responses to the question, “At forecast hour 1, how well do the following models depict storms 

that were ongoing at the model initialization time? Consider aspects like storm retention, strength, and 
location in your answer.” 



31 
 

In the first forecast hour, participants most frequently selected the options of “Very well” or 
“Moderately well” when asked, “At forecast hour 1, how well do the following models depict storms that 
were ongoing at the model initialization time? Consider aspects like storm retention, strength, and location 
in your answer.” (Fig. 18). The HRRRv4 had the best performance of the models selected, with a majority 
of its responses being “Very well”. The most frequent response for the other models was “Moderately 
well”, though all models had participants respond “Very well” or “Extremely well” in some cases. In fact, 
the model with the largest number of “Extremely well” responses was the RRFS RadVTS Control. Overall, 
the RadVTS control seemed to perform better in the first forecast hour relative to the RRFS BothVTS 
Control, with more “Very well” responses too. No models elicited the response “Not at all well”, 
suggesting that in most cases the models are able to assimilate storms successfully. The RRFSp1 appeared 
to slightly outperform the RRFSp2 Control in the first 12 hours, similar to findings from B1 which covered 
forecast hours 13 through 36.   

 

 
Figure 19 Participant responses to the prompt, “Please evaluate the structure and location of storms at forecast hour 

6 in the following models.” 
 

At forecast hour 6, the HRRRv4 and the RRFSp1 perform quite similarly, although the HRRRv4 has 
more “Very good” ratings than the RRFSp1 (Fig. 19). “Good” was the most frequent response for the 
HRRRv4, the RRFSp1, and the RRFS BothVTS Control runs, and was a very close second to “Acceptable” 
for the RRFS RadVTS Control run. The RRFS RadVTS Control and RRFS BothVTS Control runs performed 
more similarly at forecast hour 6 relative to their performance at forecast hour 1 (Fig. 9). Overall, the 
HRRRv4 and the RRFSp1 perform best relative to the other three models at forecast hour 6, with fewer 
“Poor” responses than the other configurations. Participants systematically noted a lot of convective 
coverage early in the VTS simulations, which sometimes benefited the runs, and sometimes hurt the 
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participant impression of the runs. This is exemplified by the participant comment: “RRFS VTS runs seem 
hot compared to others. Too much coverage of storms in south Texas at 1 h. Interestingly enough, 
however, these were the best forecasts at 6 hours. All of the models did well with the MCS in TX/OK, but 
the VTS runs had arguably the best structure and also best captured the storms on the TX side of the Rio 
Grande.” Similarly, a few days earlier a participant had commented “Interesting switch around between 
HRRR and RRFS Rad/Both VTS Ctl, the latter representing the structures well at T+1 but degenerating into 
a mess by T+6, not really recognisable as the obs bar the general envelopes.” Frequently, the RRFS RadVTS 
Control and the RRFS BothVTS Control were referred to collectively in the comments (e.g., “The VTS 
runs…”), suggesting that this comparison may also benefit from blinding in future SFEs. 

 

 
Figure 20 Participant ratings of assigned environmental fields. Medians are indicated by the brown lines, and mean 

values are indicated by the brown diamonds. The number of samples in each box is indicated by the text at 
the bottom of each subplot. Note that different n-values in the 2-m dewpoint are due to two participants 
not rating all models in their response. 
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Finally, participants provided a 1-10 rating encompassing all 12 hours of the simulations for one 
of three environmental fields (Fig. 20), which were randomly assigned such that an approximately equal 
number of people evaluated each field. The HRRRv4, RRFSp1, and RRFSp2 Control performed slightly 
better than the RRFS RadVTS Control and the RRFS BothVTS Control for 2-m temperature, across the entire 
distribution of ratings. There were essentially two groups of models; the RRFS RadVTS Control and RRFS 
BothVTS Control performed approximately the same, as did the HRRRv4, RRFSp1, and the RRFSp2 Control. 
All models performed similarly with respect to dewpoint, although the HRRRv4 had the highest mean 
rating. For SBCAPE, the HRRRv4 performed best, having a higher mean and median than the other 
configurations. All of the other configurations performed similarly to one another, although the RRFS 
BothVTS Control member had high variability in its ratings as seen by the span of its box plot in Fig. 20. 
Participants consistently noted a warm bias in the HRRRv4, RRFSp1, and RRFSp2 Control, and a cold bias 
in the RRFS RadVTS Control and RRFS BothVTS Control 2-m temperature forecasts. Comments on the 2-m 
dewpoints were mixed, with participants noting a wet bias on some days and a dry bias on others. One 
participant noted that the guidance was almost all too moist over the Great Lakes, which should be 
investigated by the developers to ensure this is not a systemic issue. Regarding SBCAPE, the RRFS VTS 
models were occasionally remarked to improve later in the forecast. Participants also noted an occasional 
underforecast of CAPE by the RRFS (FV3-based) models relative to the WRF-based HRRRv4, as in the 
following comment: “RRFSs continue to have lower CAPE than obs and HRRR. However, the RadVTS and 
BothVTS hold onto higher CAPE values over KS longer than the other RRFSs.” 
 
 B4) FV3 Physics Suites 
 
 This comparison explored the impact of different physics parameterizations on the depiction of 
simulated reflectivity, 2–5 km UH, and environmental attributes including 2-m temperature, 2-m 
dewpoint, and SBCAPE. Five different models were evaluated, which utilized two different microphysics 
schemes, two planetary boundary layer (PBL) schemes, and three land-surface models (LSMs). These 
physics suites were implemented in different combinations such that effects from the individual schemes 
could be isolated (e.g., one model used Thompson microphysics, MYNN PBL, and NOAH LSM, another 
model used NSSL microphysics but MYNN PBL and NOAH LSM, and yet another model used Thompson 
microphysics and MYNN PBL, but NOAH-MP LSM). These runs were mainly available for the initial three 
weeks of SFE 2022, and a configuration change at the start of the fourth week led to all comparisons after 
that change to be excluded from the analysis herein. Participants ranked the five component models from 
best to worst, and assigned the best-performing model a rating from 1 (Very Poor) to 10 (Very Good).  
 Results for the 2–5 km UH and simulated reflectivity show the RRFSphys_02 and RRFSphys_04 
configurations as consistently being ranked the highest, with both the highest mean ranking and the most 
frequent number one rankings amongst all of the members (Fig. 21). These two configurations were the 
two that utilized the NSSL microphysics, as opposed to the Thompson microphysics. Given that the 
simulated reflectivity is heavily dependent on the microphysics schemes utilized, it is not surprising that 
there is some separation by microphysics. The RRFSphys_05 member consistently ranked the lowest. This 
member used the Thompson microphysics, but solely differed from the RRFSphys_03 members in that it 
used the TKE-EDMF PBL scheme. RRFSphys_04 also utilized the TKE-EDMF PBL scheme, confirming that 
the microphysics played a larger role in determining rankings for the simulated reflectivity and UH than 
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the PBL schemes did. As with the B1 evaluations, participants noted the storm coverage, storm timing, 
and storm mode as important factors in completing their rankings and ratings; however, reflectivity 
gradients and location of significant features were also mentioned. Some participants noted spotty 
showers in warm advection areas, which they linked to the Thompson microphysics scheme. Other 
participants commented that most of the configurations were “too hot” or otherwise overdid the amount 
of convection. A few participants also commented that differences were minimal between the runs on 
some days. 
 

 
Figure 21 Reflectivity and UH rankings for models in the FV3 Physics suites comparison. Dashed lines indicate the 

mean ranking (lower is better). 
 

Environmental fields tell different stories depending on the field (Fig. 22). For the temperature, 
the RRFSphys_04 again is the top-ranked model, and its mean ranking is quite far ahead of the remainder 
of the configurations (Fig. 22a). In the comments, participants noted that RRFSphys_04 was frequently 
cooler than the other configurations, which evidently benefitted the forecasts. Cold pools were also noted 
as being too cold on occasion. However, for dewpoint, the RRFSphys_04 ranks third, after the 
RRFSphys_02 and the RRFSphys_01 configurations (Fig. 22b). Participants noted that RRFSphys_04 was 
frequently much too moist, while RRFSphys_03 and RRFSphys_05 were noted as having dry biases. These 
two configurations both use the MYNN PBL scheme and the NOAH LSM, and differ only in their 
microphysics configurations. For SBCAPE, the best performing configuration in terms of mean ranking and 
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number of times it was ranked first was far and away the RRFSphys_01 (Fig. 22c), though participant 
comments frequently noted that all SBCAPE was underdone. These results combined with the prior 
reflectivity and UH comparisons seem to suggest that the NSSL microphysics, MYNN PBL scheme, and 
NOAH LSM perform best overall (RRFSphys_02). However, elements of the Thompson microphysics 
scheme (the sole difference between RRFSphys_01 and RRFSphys_02) may lead to it performing better in 
terms of SBCAPE. 
 Ratings for the top-ranked model in each of these fields (Fig. 23) showed more stratification than 
the same plots for the B1 comparison (Fig. 3), perhaps due to a smaller sample size. For Reflectivity and 
UH, the RRFSphys_02 and the RRFSphys_05 had the highest median ratings, and the RRFSphys_02 had 
the highest mean. The RRFSphys_04, while chosen second most frequently as the best model, had a wider 
distribution of ratings when selected as the best model. The 2-m temperature, 2-m dewpoint, and SBCAPE 
all had relatively small sample sizes (below n=10 in all but one case), precluding robust comparisons and 
indicating that objective verification of these fields would likely be a useful supplement to the subjective 
data collected herein. 
 

 
Figure 22 Rankings of environment for the FV3 Physics Suites comparisons. Rankings were completed for (a) 2-m 

Temperature, (b), 2-m Dewpoint, and (c) SBCAPE. Dashed lines indicate the mean ranking for the model in 
question (higher is better). 
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Figure 23 Participant ratings for the top-ranked model in each comparison. Medians are shown by the black line; 

black diamonds indicate the mean. The sample size is listed below each box-and-whisker plot. 
 
 B5) 1-km vs. 3-km NSSL-WRF 
 
 The final evaluation unique to the B group looked at the impact of increased horizontal grid 
spacing on severe convective forecasts, focusing specifically on UH at two different levels, low-level wind 
speed depiction, and various storm characteristics. Participants compared a 1-km version nested within a 
3-km version of the same NSSL-WRF configuration at forecast hours 12–30 directly for simulated 
reflectivity characteristics, and answered questions about both configurations with regard to UH and 
hourly maximum 10-m wind speed. Due to a typo in the question about the maximum 10-m wind speed, 
data for this question is only available after 12 May 2022.   

For all characteristics except storm structure, the most frequent response to “Which model best 
depicts the following aspects of severe convective storms?” was that the 1-km and 3-km NSSL-WRF runs 
performed about the same (Fig. 24). However, the 1-km NSSL-WRF was selected as performing the best 
far more frequently than the 3-km NSSL-WRF for the number of storms, storm structure, storm evolution, 
and timing of convective initiation. The 1-km NSSL-WRF appeared to be most skilled at capturing the 
number of storms and the storm structure relative to the 3-km NSSL-WRF. 
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Figure 24 Participant responses to the question “Which model best depicts the following aspects of severe convective 

storms?” 
 

When asked specifically how well severe weather proxies performed for each of the models, 
participants were asked about 2–5 km UH’s delineation of a total severe threat in each model, 0–2 km 
UH’s delineation of a tornado threat in each model, and the hourly maximum 10-m wind speed’s 
delineation of a wind threat in each model. Overall, participants indicated that the 1-km NSSL-WRF 
performed better than the 3-km NSSL-WRF for all severe weather proxies indicated (Fig. 25). The 2–5 km 
UH achieved higher scores as a proxy for total severe than the 0–2 km UH as a proxy for tornadoes or the 
10-m wind speed as a proxy for severe convective winds. Participant evaluation indicated that these 
proxies had relatively little value, with the distribution for each of the models and fields centered around 
the middle (1-km NSSL-WRF 2–5 km UH), second-lowest (3-km NSSL-WRF 2–5 km UH and both models’ 
0–2 km UH), or the lowest (both models’ 10-m Wind) option available to them in the survey. Causes for 
these discrepancies and overall poor performance should be investigated. One participant offered a 
potential direction for investigation in their comments, noting that “The 1-km NSSL run storm 
characteristics are very similar to those seen in the 3-km NAM nest. The NAM nest diffusion on 
hydrometeors and Smagorinsky diffusion were reduced in the latest version.” Participants also noted the 
relative discontinuities of the 1-km horizontal grid spacing relative to the 3-km horizontal grid spacing, 
and that this visualization can influence impressions of the model performances. Unfortunately, many 
participant comments indicated that these two models did not provide useful guidance during the cases 
that they were evaluating. Utilizing 1-km models will require further calibration of forecasters and post-
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processed guidance due to differences with regards to the storm features. As one participant stated, “1 
km version looked better due to more resolution, but not sure if it was a better forecast.  Would definitely 
need to recalibrate for the much higher UH values from the 1 km model!” 

 

 
Figure 25 Participant responses to the question of how well storm proxies delineated the overall severe threat (2–5 

km UH), tornado threat (0–2 km UH), and wind threat (10-m Wind) 
 
 
c) Model Evaluations – Group C: CAM Ensembles 
 
 C1) CLUE: 00Z Ensembles  
 
 This evaluation compared four 0000-UTC initialized, FV3-LAM CAM ensembles to HREFv3: (1) 
RRFSp2e, (2) MAP-VTS-rad, (3) MAP-VTS-bot, and (4) RRFSp2eMP.  Each of these ensembles has a unique 
configuration strategy, so the primary goals were to find which strategy provided the most skillful 
forecasts and how each performed relative to HREFv3.  Note, RRFSp2e is a prototype for what will 
eventually be implemented operationally as RRFSv1, replacing HREF and subsuming several other regional 
systems to simplify NCEP’s production suite. These evaluations were focused over a mesoscale area of 
interest with the greatest potential for severe weather over the CONUS during the convective day (i.e., 
1200-1200 UTC; forecast hours 13-36).  The forecast field most commonly examined during this severe 
weather evaluation was the 24-h summary of 2-5 km AGL hourly maximum UH.  The ensemble maximum 
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UH and neighborhood UH probabilities (>99.85th percentile) were displayed along with preliminary local 
storm reports (e.g., Fig. 26).  A significant change relative to previous years was that these were blind 
evaluations.  The panels were labeled as “Model A”, “Model B”, etc., and the configuration of the panels 
was randomized daily.  This helped to negate any implicit or explicit biases of participants and facilitators.  
The models were revealed by the facilitators to the participants after the evaluations were submitted.  
Another change relative to previous years was that the ensembles were evaluated using rankings (best = 
1; worst = 5) instead of the 1-10 ratings, where 1 was worst and 10 was best. The rankings allow for a 
more consistent range of scores, unlike the ratings where there can be significant variability depending 
on how individual participants perceive and score “good” or “bad” forecasts.   
 

 
Figure 26 Example of multi-panel comparison webpage for the 0000 UTC CAM ensemble C1 evaluation during the 

2022 SFE.  The 24-h ensemble maximum UH (shaded) and neighborhood probability of UH>99.85th percentile 
(contoured) is displayed for RRFSp2e (upper left), RRFS MixPhys (upper middle), RRFS BothVTS (upper right), 
HREFv3 (lower left), and RRFS RadVTS (lower middle) for 19 May 2022.  Preliminary severe storm reports 
are also overlaid (wind – blue squares, hail – green circles, and tornado – red upside-down triangles. 
Significant reports are filled in black). Note, only the “Model A”, “Model B”, etc., labels were displayed during 
evaluations.  

 
The boxplots showing the distributions of subjective rankings are displayed in Figure 27.  Note, 

because rankings were used, the results had to be divided according to model availability.  So, rankings 
for cases where all ensembles were available are shown in Fig. 27a, where all ensembles except RRFS 
MixPhys were available are shown in Fig. 27b, and where all ensembles except RRFSp2e and RRFS MixPhys 
were available are in Fig. 27c.  This accounts for all 19 days over which evaluations were conducted.  The 
main takeaway from this comparison was that HREFv3 and RRFSp2e consistently were ranked highest and 
performed quite similarly.  Out of the RRFS MixPhys, RRFS RadVTS, and RRFS BothVTS ensembles, none 
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stood out as being ranked better or worse, but they were consistently ranked lower than HREF and 
RRFSp2e.   

 

 
Figure 27 Box plots showing the distributions of rankings by SFE participants of hourly maximum fields for severe 

weather forecasting over a mesoscale area of interest for the forecast hours 13-36 for the C1: CLUE 00Z 
Ensembles evaluation (HREF – red; RRFSp2e – blue; RRFS MixPhys – green; RRFS RadVTS – orange; RRFS 
BothVTS – pink). The numbers overlaid on each bar indicate the value of the average ranking and the 
horizontal line indicates the median.  (a) Rankings distributions for the days that all five ensembles were 
available, (b) Same as (a) except for days when only RRFS MixPhys was missing, (c) same as (a) and (b) 
except for days when RRFS MixPhys and RRFSp2e were missing.   

 
 Participants were also asked to subjectively rate on a scale of 1-10 (1 = worst; 10 = best), the one 
ensemble that they ranked best.  The distributions of these ratings are displayed in Figure 28. By far, the 
HREF and RRFSp2e were the top ranked ensemble most frequently, with HREF being best 43% of the time 
and RRFSp2e 31% of the time.  The average ratings for the top ranked ensembles were tightly clustered 
between 7 and 8, and RRFSp2e had the highest average at 7.86.   
 Participant comments most frequently pointed out timing and probability magnitude differences 
in the ensembles.  When timing errors were noted in any ensemble, convection initiation or translation 
speed was most often too slow.  In a couple cases, it was noted that HREFv3 had the most ensemble 
spread and that the RadVTS and BothVTS runs had the least spread.  It was also noted several times that 
performance depended on whether UH or wind diagnostics were compared to the distribution of LSRs.   

Although the HREF has been a formidable baseline for several years, the performance of the 
RRFSp2e in this year’s SFE was very encouraging with generally very similar subjective scores compared 
to HREF.  These results give some confidence that with further research and development, RRFSv1 can be 
transitioned into operations – a very important step for NOAA’s UFS initiative.  
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Figure 28 Distributions of subjective ratings for each ensemble when it was ranked as the best performing.  Numbers 

overlaid on the boxplots indicate mean ratings, while the horizontal black line indicates the median.  At the 
bottom of the panel, “Top scores” refers to the number of top ranked forecasts for the corresponding 
ensemble, “Tot. ratings” is the total number of times that particular ensemble received any ranking, and the 
“% of top” is the percentage of time that ensemble was ranked the top for the cases that ensemble was 
available.   

 

 C2) RRFSp2e vs. HREF 
 
 This evaluation featured an in-depth examination of several storm attribute and environmental 
fields from 00Z initializations of RRFSp2e and HREFv3.  These direct comparisons served to unearth ways 
in which the current operational CAM ensemble (HREFv3) differs from a candidate to replace it (the 
RRFSp2e).  Specifically, participants were asked to compare mean environmental fields (2-m temperature, 
2-m dewpoint, and surface-based CAPE) in the HREF and RRFSp2e ensembles, as well as UH aggregated 
over 4-h time windows, for the periods 1700-2000, 2100-000, and 0100-0400 UTC.  For each time period 
and field, participants indicated if RRFSp2e was much worse, worse, about the same, better, or much 
better than HREFv3.  The mean environmental fields were compared to analyses from the 3D-RTMA, while 
UH was compared to LSRs.  An example of the displays used in this evaluation from 2000 UTC 20 May 
2022 is shown in Figure 29. 
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Figure 29 The ensemble mean 2-m temperature fields valid 2000 UTC 20 May 2022 from (a) HREFv3, (b) RRFSp2e, 

and (c) 3D-RTMA.  (d) – (f) and (g) – (i) same as (a) – (c), except for 2-m dewpoint and surface-based CAPE, 
respectively.  4-h maximum UH and neighborhood maximum probabilities of UH ≥ 99.85th percentile with 
LSRs overlaid for (j) HREFv3 and (k) RRFSp2e.   

 
 The aggregate results from these comparisons are shown in Figure 30. The participant selections 
were converted to numerical values so that much worse = -2, worse = -1, about the same = 0, better = 1, 
and much better = 2. The results were highly dependent on the field examined and the time window.  The 
largest differences occurred at the earlier times (i.e., 1700-2000 UTC), and the amplitude of these 
differences decreased with lead time.  For temperature, RRFSp2e was generally worse than HREFv3, while 
for dewpoint and surface-based CAPE, RRFSp2e was generally better.  The 4-h time window UH forecasts 
were generally rated about the same.  From the participant comments, it was consistently noted that 
RRFSp2e had a distinct cool bias that was most prevalent at the earlier times in the forecasts.  For 
dewpoint, RRFSp2e was closer to observations, and HREFv3 had a dry bias.  For surface-based CAPE, 
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RRFSp2e had magnitudes that more closely matched observations than HREF.  Finally, for UH it was often 
noted that differences were mostly small.   
 

 
Figure 30 Aggregate results for the comparisons between HREFv3 and RRFSp2e.  The participant selections were 

converted to numerical values so that much worse = -2, worse = -1, about the same = 0, better = 1, and 
much better = 2, and then boxplots of the distributions were plotted.  

 

 

 C3) CLUE: Data Assimilation 
 
 This evaluation focused on the first 12 h of 0000 UTC initialized forecasts from three CAM 
ensembles that employed different data assimilation strategies and compared their forecasts to HREFv3.  
Participants were asked, “Focusing on the first 12 hours of the forecast, evaluate four 00Z-initialized 
ensembles with different data assimilation approaches.  Three ensembles use a hybrid EnVar approach, 
but two also use a technique called valid-time-shifting (VTS) to increase the membership of the background 
ensemble by a factor of 3.  One of the ensembles only applies VTS to radar data (RRFS RadVTS), while 
another applies VTS to both radar data and conventional observations (RRFS BothVTS). The RRFSp2e does 
not use VTS (note, there are slight differences between RRFSp2e and the VTS ensembles, so the RRFSp2e 
comparisons are not strictly controlled).  For each ensemble, evaluate 1-h composite reflectivity paintballs 
and probabilities, 4-h Updraft Helicity, and an environmental field (2-m Temperature, 2-m Dewpoint, or 
Surface-based CAPE will be randomly selected) for the 0000-0400, 0500-0800, and 0900-1200 UTC time 
periods.”  An example of the display of composite reflectivity probabilities used for these evaluations is 
shown in Figure 31.   
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Figure 31 Neighborhood maximum probabilities of composite reflectivity ≥ 40 dBZ valid 0800 UTC 5 May 2022 for 

0000 UTC initializations of (a) HREFv3, (b) RRFSp2e, (c) RRFS RadVTS, and (d) RRFS BothVTS.  In each panel 
observed composite reflectivity ≥ 40 dBZ is indicated by the pink contours with hatching inside.  

 
For UH, RRFS RadVTS had a slight advantage over RRFS BothVTS at forecast hours 0-4, but this 

advantage decreased at later lead times (Fig. 32).  The UH RRFSp2e scores were generally similar to both 
of the VTS configurations across all three lead times.  For composite reflectivity, once again RRFS RadVTS 
had a slight advantage at forecast hours 0-4, but at later forecast hours RRFS BothVTS and RRFSp2e ratings 
were similar.  For 2-m temperature, results were very similar for all three models in each time period, and 
for 2-m dewpoint the BothVTS runs had an advantage for the 0-4 and 5-8 h time periods, but for hours 9-
12 results were similar between all three models.  Finally, the surface-based CAPE results jumped around 
quite a bit.  The VTS runs were notably better than RRFSp2e for the 0-4 h period, but the next time period 
this result switched with the RRFSp2e being notably better than each of the VTS runs.   

Several themes emerged from the comments. The first was that at many times the differences 
were relatively minor between the three systems. At other times, superior performance was noted in 
RRFSp2e, but there were just as many cases where the VTS runs were noted as performing better than 
VTS.  Thus, the comments did not reveal consistent differences in performance.  Several comments noted 
a cool temperature bias for all three models.  When comparing the two VTS runs, oftentimes it was noted 
that they performed very similarly. There were also times when either Rad or Both was noted as 
performing best, so again the comments did not reveal systematic differences in forecast quality.   
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Figure 32 Distributions of subjective ratings (1-10) by SFE participants for the C3 CLUE: Data Assimilation evaluation.  

The top, middle, and bottom set of boxplots are for forecast hours 0-4, 5-8, and 9-12 h, respectively.  In each 
row, distributions are shown for RRFSp2e (gray), RRFS RadVTS (light blue), and RRFS BothVTS (dark blue) 
from left to right for the variables UH, composite reflectivity, 2-m temperature, 2-m dewpoint, and surface-
based CAPE. The numbers in white text indicate mean ratings. The horizontal black lines indicate the median.     



46 
 

C4) TTU Ensemble Subsetting 
 
 This evaluation involved a collaboration with Texas Tech University to look at how ensemble 
sensitivity analysis could potentially be used to optimize ensemble-derived forecast probabilities.  
Specifically, ensemble sensitivity was used to identify a subset of 6 members with the smallest errors from 
a 20-member ensemble composed of RRFSp2e and RRFSp2eMP.  Neighborhood probabilities of UH ≥ 100 
m2s-2 and composite reflectivity ≥ 40 dBZ within 40-km of a point for a 6-h time window were derived 
from the 6-member subset, as well as the full 20-member ensemble.  In the survey, participants were 
asked to determine how the subset probabilities compared to those from the full ensemble (i.e., were the 
subset probabilities much worse, worse, about the same, better, or much better).  Each day, before the 
survey was administered, participants worked with the facilitators to choose the area and 6-h time interval 
over which to apply the ensemble subsetting, which would be evaluated the next day.  The strategy here 
was to choose an area with uncertainty since the subsetting is designed to increase certainty by increasing 
or decreasing probabilities in the “right” direction (i.e., decrease where storms do not occur, and increase 
where they do occur).  An example of these comparisons is shown in Figure 33 and the summary of results 
is shown in Figure 34.   
 One issue with this evaluation was that there were only 9 out of 19 days in which all the members 
of the full, 20-member ensemble were available.  In these situations, it was usually only the RRFSp2e 
ensemble that was available, so the 6-member subset was drawn from only 10 members.  Ideally, more 
members are desired to choose from to maximize the chances of finding members with small errors.  
Because of this issue, results were compiled from all the cases (Figs. 34a and c; i.e., including cases where 
data from the full ensemble was missing), and cases for which data from all members of the full ensemble 
were available (Figs. 34b and d).  For UH probabilities (Figs. 34a and b), for both all days and for the subset 
of days in which all data was available, the subsetting most frequently resulted in either about the same, 
or better forecasts than the full ensemble.  After converting to numerical ratings, it was found that the 
mean scores (0.41 for all days and 0.5 for only days with all data) were significantly greater than 0, where 
a one sample Student’s t-test was used for hypothesis testing.  This indicates that, on average, the 
subsetting resulted in improved UH probabilities.  On the other hand, for the composite reflectivity 
probabilities, the mean subjective ratings were not significantly different than 0, indicating that subsetting 
did not result in improved reflectivity probabilities.   

Examples of comments from participants on days when the 6-member subset performed better 
than the full ensemble included, “The subset moves the probabilities closer to the storm reports AND 
increases the probability magnitudes. Fascinated that only 6 members can make that difference...”, “The 
subset had more realistic probabilities, but were slightly displaced to the west compared to where the 
storm reports occurred”, and “Generally it is hard to distinguish large differences however I thought the 6-
member subset narrowed down the solution a bit more and reduced the FAR.”  
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Figure 33 Neighborhood Maximum Ensemble Probability of UH ≥ 100 m2s-2 derived from (a) the full 20-member 

ensemble, and (b) the 6-member subset.  Locations of LSRs are overlaid in each panel.  The forecasts are 
valid over a 6-h time window ending 0000 UTC 17 May 2022.  

 
 

 
Figure 34 Histograms showing the response frequencies to whether the subset probabilities were much worse (-2), 

worse (-1), about the same (0), better (1), or much better (2) than probabilities derived from the full 
ensemble for (a) UH probabilities calculated on all days, (b) UH probabilities calculated on days with all 
ensembles available, (c) composite reflectivity probabilities calculated on all days, and (d) composite 
reflectivity probabilities calculated on days with all ensembles available.  In each panel, the number in white 
text and corresponding vertical line marks the mean subjective rating.   
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C5) WoFS: Number of Members 
 
In this evaluation, UH- and reflectivity-based probabilities and paintball plots from 2100 and 2300 

UTC WoFS initialization were compared for the full 18-member WoFS, as well as 9- and 13-member 
subsets.  The purpose of this evaluation activity was to see whether it might be possible to run WoFS with 
fewer members and get the same forecast quality for hourly probabilistic forecasts.  If it is possible to run 
WoFS with fewer members while maintaining the same level of forecast quality, it is possible that gains in 
skill could be achieved through reducing membership but using more advanced physics, data assimilation, 
and/or enhancing the resolution, while using the same number of computational resources.  For both the 
2100 and 2300 UTC WoFS initializations participants were asked, “On a scale of 1-10 (1 = very poor; 10 = 
very well) rate the quality of storm attribute (1- and 4-hourly) and reflectivity forecasts from 9, 13, and 18 
members... Feel free to compare whichever storm attribute fields you find most useful/relevant...”.  An 
example display is shown in Figure 35 and results are summarized in Figure 36.  
 

 
Figure 35 Neighborhood maximum ensemble probabilities of hourly maximum 10-m wind speed ≥ 30 knots 

(contours) and the maximum from any member values of hourly maximum 10-m wind speed (shaded) from 
2100 UTC WoFS initializations on 11 May 2022 with (a) 9, (b) 13, and (c) 18 members. (d) – (f) same as (a) – 
(c) except for 2300 UTC WoFS initializations.  LSRs are overlaid in each panel.  

 
The results revealed that the 9, 13, and 18 member WoFS forecasts performed very similarly.  

Although there was a very slight increase in the mean subjective ratings as the number of members 
increased, none of these differences were statistically significant (Welch 2-sample t-test with 𝛼 = 0.05). 
The overriding theme from the comments was how similar the forecasts were to one another.   
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Figure 36 Distributions of subjective ratings (1-10) by SFE participants for 2100 and 2300 UTC WoFS initializations 

where probabilities were derived from 9, 13, and 18 members.   
 

C6) WoFS: Time Lagging 
 
 In this evaluation, 18-member WoFS guidance was compared where the 18 members came from 
a single initialization time versus different (i.e., time-lagged) initialization times.  Specifically, one set of 
18 members came from 6 members drawn from 1900, 2000, and 2100 UTC; another set of 18 members 
came from 9 members drawn from 2000 and 2100 UTC; and the final set of 18 members all came from 
2100 UTC.  The same comparisons were repeated, but for WoFS ensembles based at 2300 UTC.  The 
primary science question was whether time-lagging could be a beneficial strategy for WoFS forecasts.  For 
both the 2100 and 2300 UTC WoFS initializations participants were asked, “To gauge the potential impact 
of time-lagging with the Warn-on-Forecast System (WoFS), probabilities and ensemble maxima for several 
storm attribute fields (updraft helicity, updraft speed, & 10-m wind gust) as well as reflectivity are 
computed from 3 different sets of WoFS members based at 2100 and 2300 UTC.  The first set uses 6 
members from t, t-1, and t-2, where t is initialization time. The second set uses 9 members from t and t-1, 
and the third uses 18 members from t.  These configurations are referred to as WoFS (6/6/6), WoFS (9/9), 
and WoFS (18), respectively.” An example display is shown in Figure 37 and results are summarized in 
Figure 38.  
 The results revealed that WoFS (18) – i.e., the full WoFS ensemble initialized at 2100 and 2300 
UTC – performed slightly better than the two time-lagged WoFS configurations.  For 2100 UTC based 
forecasts, the differences in mean subjective ratings for both time-lagging configurations and WoFS (18) 
were statistically significant, but for 2300 UTC based forecasts, the differences were not quite significant 
(hypothesis tests used Welch 2-sample t-test with 𝛼 = 0.05).  General themes from the participant 
comments were that differences were often not noticeable or very subtle.  At other times, participants 
noted that the non-time-lagged ensemble was able to better “hone in” on events. 
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Figure 37 Neighborhood maximum ensemble probabilities of hourly maximum 10-m wind speed ≥ 30 knots 

(contours) and the maximum from any member values of hourly maximum 10-m wind speed (shaded) from 
WoFS initializations based at 2100 UTC 11 May 2022 for (a) WoFS (6/6/6), (b) WoFS (9/9) and (c) WoFS (18). 
(d) – (f) same as (a) – (c) except for WoFS initializations based at 2300 UTC.  LSRs are overlaid in each panel.   

 
 

 
Figure 38 Distributions of subjective ratings (1-10) by SFE participants for time-lagged WoFS forecasts based at 2100 

and 2300 UTC where probabilities were derived from WoFS (6/6/6), WoFS (9/9), and WoFS (18) (see text for 
these definitions).    
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d) Model Evaluations – Group D: Medley 
 
 D1) ISU ML Severe Wind Probabilities 
 
 Machine-learning algorithms were used to derive probabilities that thunderstorm wind damage 
reports were associated with severe-intensity winds (i.e., 50 knots or more). Two training approaches 
were utilized: one using wind damage reports that had a measured wind value and one with an additional 
dataset of sub-severe thunderstorm wind measurements. For both of these approaches, output from two 
different algorithms were presented. One was an ensemble model [stack generalized linear model (GLM)], 
while the other was the best single model determined from objective measures in testing [i.e., gradient 
boosted machine (GBM)]. Severe wind probabilities derived from each of these four machine learning 
models were available for yesterday’s preliminary wind reports for evaluation on an interactive webpage 
developed by Iowa State University (ISU; Fig. 39). 
 

 
Figure 39 Example of interactive webpage for the D1. ISU Machine-Learning Severe Wind Probability evaluation 

during the 2022 SFE. The preliminary wind reports are shaded with the probability that the report was 
associated with a wind gust of ≥50 knots from the various ML algorithms.  The user has the option to 
zoom/roam, hover over a report to see associated probabilities and report text, and choose to view all 
reports, just measured reports, or just damage reports. 

 

Participants were asked to evaluate (on a scale of 1 to 10; with 10 being best) how well the 
machine-learning algorithms provided useful and accurate probabilistic information regarding the 
likelihood that wind damage reports were associated with winds ≥ 50 knots.  Given the subjective nature 
of the evaluation, participants were asked to consider an assessment of the environment and storm mode, 
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agreement with severe wind probabilities from the SPC Day 1 Outlook, and the ML probabilities assigned 
to measured wind reports.  This evaluation was done without the participants knowing which model or 
approach was being displayed during the evaluation.  The distribution of subjective ratings by participants 
during the five-week evaluation of the ISU ML severe wind probabilities reveals a relatively narrow rating 
range (i.e., 5-8 out of 10) regardless of model or approach (Fig. 40).  The primary findings from the 
subjective ratings include 1) the ML models that were trained with the additional database of sub-severe 
thunderstorm wind gusts generally received higher ratings than those models trained only with measured 
wind report, and 2) the impact of the ML model was relatively small in the subjective ratings with a very 
slight edge in the mean ratings to the ensemble approach (i.e., stack GLM).  The SFE participants 
commonly noted that using the sub-severe thunderstorm wind gusts in the training often led to higher 
ML probabilities of severe winds, especially for wind damage reports in the eastern CONUS.  For the first 
time, the ISU ML output was also used to calculate a practically perfect hindcast for severe wind (not 
shown).  Overall, the participants commented that weighting the wind reports using the ML output was 
preferred over treating all wind reports equally in the practically perfect hindcast. 
 

 

Figure 40 Distributions of subjective ratings (1-10) by SFE participants of the ISU ML severe wind probabilities for 
preliminary wind reports for two models (GBM - blue; stack GLM - green) and two different approaches 
(trained with LSRs and sub-severe thunderstorm gusts - darkest shade;  trained with only reports - lightest 
shade). 
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 D2) NCAR ML Convective Mode Probabilities 
 
 Machine-learning algorithms were trained to provide probabilistic guidance of simulated storm 
mode using output from the HRRRv4. Specifically, three trained ML models were evaluated: 1) a 
supervised ML system that trains a convolutional neural network (CNN) to predict the mode of CAM 
storms using a hand labeled dataset of ~2000 CAM storms, 2) a partially-supervised CNN system, that is 
trained using a “proxy” field related to convective mode (i.e., object size and updraft helicity) and 
clustered using a Gaussian mixture model (GMM), and 3) a new deep neural network (DNN) that predicts 
mode based on a set of convective storm properties, such as size, area, updraft helicity, reflectivity, etc.  
All three systems output probabilistic predictions of supercells, quasi-linear convective systems (QLCSs), 
and disorganized modes for storm objects from the 00 UTC-initialized HRRR. The three ML models applied 
to the HRRR were evaluated based on the subjective impressions of the participants on estimating 
convective mode using an interactive website developed by NCAR (Fig. 41).   
 

 

Figure 41 Example of interactive webpage for the D2. NCAR Machine-Learning Convective Mode Probability 
evaluation during the 2022 SFE. Storm objects from the CAMs are shaded with the probability of being a 
supercell, QLCS (shown here in blue shades), or disorganized convective mode with composite reflectivity 
lightly shaded in the background. 

 
Participants were asked to evaluate (on a scale of 1 to 5; with 5 being best) how well the machine-

learning algorithms provided useful and accurate probabilistic estimates of convective mode (i.e., 
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supercell, QLCS, or disorganized) over a regional domain.  The distribution of subjective ratings by 
participants during the five-week evaluation of the NCAR ML severe wind probabilities reveals a very 
similar distribution of ratings for the different ML algorithms (Fig. 42).  This does not necessarily indicate 
that the output was similar day-to-day, but it does indicate that there was not a favored algorithm over 
all of the cases during the SFE.  This is a positive result for the partially supervised GMM algorithm because 
the ratings were improved from last year and extensive hand labels are not required for training.   A 
convective mode neighborhood probability product (not shown) generated from the time-lagged HRRR 
runs was also subjectively evaluated.  Overall, the feedback from this product was somewhat mixed, but 
the participants commented about the potential utility, especially for summarizing the evolution of 
convective mode through the forecast period. 

 

 
Figure 42 Distributions of subjective ratings (1-5; where 5 is best) by SFE participants of the NCAR ML convective 

mode probabilities for storm objects from the HRRR and three ML algorithms (supervised CNN - red; deep 
neural network (DNN) - orange, and partially supervised GMM - yellow). 
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 D3) Analyses 
 
 i) Mesoscale Analysis Background 
 
 Three hourly versions of 3D-RTMA with different backgrounds were subjectively evaluated by 
participants during the 2022 SFE.  The evaluation was performed to assess the quality and utility of these 
analysis systems for situational awareness and short-term forecasting of convective-weather scenarios. 
Prototype 1 (i.e., 3D-RTMAp1) used the FV3-based RRFSp1 as the first-guess background information and 
the GDAS for background error covariances in the hybrid DA system, prototype 2 (i.e., 3D-RTMAp2) used 
the RRFSp2 as the first-guess background information and its own ensemble for background error 
covariances, and the HRRR baseline version used the operational HRRR for first-guess background and the 
GDAS for background error covariances.  The hourly analyses for 2-m temperature, dewpoint, and 
SB/ML/MUCAPE were examined during the 18-03 UTC period on the following day (Fig. 43).  Post-
processing issues with the effective-layer STP and SRH precluded the evaluation of those fields. 
 

 

Figure 43 Example of the website comparison page for the 3D-RTMA during the 2022 HWT SFE.  The 3D-RTMAp1 is 
shown in the upper-left panel, the 3D-RTMAp2 is in the upper-middle panel, and the 3D-RTMA HRRR baseline 
is show in the upper-right panel.  The difference plots are shown in the bottom row: 3D-RTMAp1 - 3D-RTMA 
HRRR (lower left), 3D-RTMAp2 - 3D-RTMA HRRR (bottom middle), and 3D-RTMAp2 - 3D-RTMAp1 (bottom 
right).  The 2-m temperature analysis valid at 2200 UTC on 12 May 2022 is shaded in the upper row.  The 
difference (analysis-obs) at METAR sites is shown by the size and shading of the dots.  The corresponding 2-
m temperature analysis differences are shaded in the bottom row. 

 
The goal of this evaluation was to assess the impact of the first-guess background on analyses for 

short-term severe weather forecasting applications.  Overall, both of the FV3-based versions of the 3D-
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RTMA (i.e., p1 and p2) were rated subjectively “slightly worse” to “about the same” as the HRRR-based 
version (Fig. 44).  Specifically, participants commonly noted issues in the FV3-based versions in the 
composite reflectivity field for a high bias in both convective and stratiform regions.  The FV3-based 
versions also tended to display a moist bias in the 2-m dewpoint field, though this moist bias was reduced 
from last year.  Differences in the 2-m temperature field were most commonly associated with effects 
from convection.  In general, the HRRR-based version handled the effects of convection on 2-m 
temperature better than the FV3-based versions through more accurate representation of the size, shape, 
and magnitude of cold pools and thunderstorm outflows.  While the CAPE fields and soundings were also 
examined during the SFE, there did not appear to be any systematic biases or preferred analysis versions 
that stood out consistently across the domain and from day-to-day.  The two FV3-based versions were 
also compared to one another and were more similar to each other than to the HRRR-based version with 
a median rating of “about the same”.  There were not any systematic or consistent differences that stood 
out during the subjective evaluation, but both versions occasionally displayed some erroneous “dry 
spikes” aloft when looking at the forecast soundings.  This behavior was too inconsistent and isolated to 
identify the cause. 
 

 

Figure 44 Distributions of subjective ratings (-2 to +2) by SFE participants of the 3D-RTMAp1 compared to the 3D-
RTMA HRRR (dark gray), 3D-RTMAp2 compared to the 3D-RTMA HRRR (light gray), and 3D-RTMAp2 
compared to 3D-RTMAp1 (gold).  The ratings represent how the analyses compared to one another from  -
2: Much Worse; -1: Slightly Worse; 0 - About the Same; +1: Slightly Better; +2: Much Better. 
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 ii) Storm-scale Analyses 
 
 The Warn on Forecast System (WoFS) was used to explore whether a high resolution, rapidly 
updating ensemble DA system can serve as a verification source for severe winds.  Specifically, the 15-
minute forecasts of 10-m and 80-m winds from WoFS (cycled every 15 minutes) were used as a proxy for 
the analysis (i.e., ground truth) of severe wind.  The WoFS ensemble maximum 10-m and 80-m wind 
analyses were accumulated from 1800 UTC through 0300 UTC from comparison with preliminary local 
storm reports, especially measured gusts (Fig. 45).     
 

 
Figure 45 Example of the website comparison page for the WoFS analyses during the 2022 HWT SFE.  The 12 May 

1800-0300 UTC accumulated ensemble maximum 10-m wind is shown in the left panel, the ensemble 
maximum 80-m wind in the middle panel, and the observed composite reflectivity in the right panel.  The 
wind damage reports are the black circles on the left two plots while the measured gusts are the open 
squares shaded by the difference (analysis-obs) of the gust measured at that location. 

 
The goal of the evaluation was to assess the current capability of WoFS to produce output for 

diagnosing severe and damaging winds.  Overall, the WoFS ensemble maximum winds were positively 
viewed in terms of lining up with preliminary severe wind reports and a subjective assessment of severe 
wind based on environment and radar characteristics.  Overall, the 80-m winds received higher subjective 
ratings than the 10-m winds (Fig. 46) and often better matched the magnitudes of any measured gusts 
(i.e., the 10-m winds were always a larger underestimate of the measured gusts).  One aspect that stood 
out more this year than last year was that spurious convective gusts were occasionally present in the 80-
m wind field even where convection did not form in reality.  This appeared to often be a result of an outlier 
member near the domain boundary, so efforts to use observed reflectivity to filter out spurious members 
will be employed in the future.  Overall, the participants found this to be an interesting and promising 
approach and use of a rapidly cycling convection-allowing ensemble system.  
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Figure 46 Distributions of subjective ratings (1-5) by SFE participants of the WoFS storm-scale severe wind analysis 
for ensemble maximum 10-m winds (blue) and 80-m winds (gray), where the ratings represent how well 
the WoFS maximum wind analyses align with the preliminary severe wind reports and overall assessment 
of severe winds: 1 - Very Poorly; 2 - Poorly; 3 - Neutral, neither poorly nor well; 4 - Well; 5 - Very Well. 

 D4) Significant Severe Winds 
 
 In an effort to assess significant wind (i.e., 65+ knots) potential in CAMs from mesoscale 
convective systems (MCSs), a couple of variables were added to the NSSL-WRF for evaluation.  The hourly 
maximum variables include the maximum wind in the 0-2 km AGL layer and the integrated wind in the 0-
2 km AGL layer.  Operational experience has highlighted that 3-km CAMs often develop intense rear-inflow 
jets in well-organized MCSs that can only be visualized currently in forecast soundings.  The hypothesis is 
that these new diagnostic variables may be able to more readily highlight significant winds in simulated 
MCSs.  This evaluation compared standard 10-m wind output with the new wind variables.  Unfortunately, 
there was only one day during the 2022 HWT SFE with a notable MCS that produced significant severe 
winds (i.e., 12 May; Fig. 47), so these products were only evaluated for that single day.  The maximum 0-
2 km AGL wind highlighted a large swath of 65+ knot winds that verified well and even highlighted 
potential for 85+ knot winds, which were observed.  Meanwhile, the 10-m wind output only highlighted 
a small area with 50+ knot winds.  Thus, the utility and potential of this new output was confirmed for this 
notable event, but should be evaluated over a variety of other events to learn more about its 
characteristics. 
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Figure 47 Example of the website comparison page for the significant severe wind evaluation during the 2022 HWT 
SFE.  The 24- h forecast from the 0000 UTC NSSL-WRF is shown for 12 May for 10-m wind (upper left and 
lower left), maximum 0-2 km AGL wind (upper middle), integrated 0-2km AGL wind (upper right), simulated 
reflectivity (lower middle), and observed reflectivity (lower right).   

 
 D5) County-Based Watch Guidance 
 
 An HREF-based machine learning (ML) model was developed to produce automated, non-static 
watch products that dynamically track with the predicted severe weather threat.  This guidance was 
derived from a gradient boosted classifier trained on HREF ensemble updraft helicity, updraft vertical 
velocity, 10-m wind, and sfc-500 mb shear.  Estimated watch counties were inferred at each 12z HREF 
forecast hour from the ML probabilistic output and masked such that a county must fall within at least a 
13z D1 Slight risk to qualify for a watch.  Automated watches produced by the ML guidance were designed 
to provide at least 3 hours of lead time prior to the first occurrence of severe weather.  An alternative 
automated watch product was also derived from the SPC Severe Timing guidance.  Estimated watch 
counties were inferred at each forecast hour from the temporally disaggregated individual hazard 
probabilities provided by the 13z Severe Timing guidance and the 12z HREF.  A county was considered to 
be in a watch at a given forecast hour if the timing guidance produced individual hazard probabilities 
equivalent to at least a Slight risk at that location and time.  As with the ML guidance, these automated 
watches were designed to provide at least 3 hours of lead time prior to the first occurrence of severe 
weather. 
 The first-guess county-based watch products were presented to SFE participants via an interactive 
webpage with three graphic panels as shown in Figure 48.  Hourly forecasts from the SPC Severe Timing 
Guidance were displayed in the left-most panel, the ML guidance forecasts were presented in the middle 
panel, and the “observed” SPC-issued Severe Thunderstorm and Tornado Watches were provided in the 
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right-most panel.  All evaluations of the ML and Severe Timing Guidance first-guess watches were 
performed for the previous day’s severe weather.  As part of the evaluation, participants were asked to 
complete a survey consisting of five questions.  The first two questions captured metadata such as the 
respondents’ unique participant number and the date being evaluated.  Question 3 (Q3) asked 
respondents to subjectively rate how similar the placement and timing of the ML and Severe Timing 
Guidance watch products were to the operational Tornado and Severe Thunderstorm Watches issued by 
the NWS.  Each product was assessed independently on a 5-point Likert scale with values ranging from 
“Not at all similar” to “Extremely similar.”  Respondents were instructed to consider the full 16-hour 
forecast period when determining their responses, and an option of “N/A” was provided if there were no 
operational watches issued for the event.  Similarly, Q4 directed participants to subjectively evaluate how 
well the ML and Severe Timing Guidance watch products captured the location and timing of the severe 
weather threat during the available 16-hour forecast period.  Again, the ML and non-ML products were 
independently assessed via a 5-point Likert scale ranging from “Terrible” to “Excellent.”  This evaluation 
was performed using preliminary local storm report (LSR) and NWS storm-based warning overlays to 
represent the observed location and time of severe weather occurrence.  Additionally, respondents were 
instructed to only consider reports and warnings that fell within at least a 13z D1 SLGT to avoid penalizing 
the forecast products for not capturing severe hazards in locations where the guidance was systematically 
precluded from issuing forecasts.  Finally, Q5 provided an open response field for participants to describe 
their thoughts about the performance of the guidance for the day. 
 

 
Figure 48 Web display presented to 2022 SFE participants while evaluating the performance of the 12z HREF-based 

ML and 13z SPC Severe Timing Guidance first-guess watch products. 
 

Respondents were neutral on average when rating how similar the ML and Severe Timing 
Guidance first-guess watch products were to the SPC-issued Tornado and Severe Thunderstorm watches 
(Fig. 49a).  The ML guidance received a bootstrapped mean score of 3.13 with a standard deviation of 
0.82.  Similarly, the non-ML guidance was given a mean rating of 2.93 with a standard deviation of 0.93.  
Differences between the two products were small and ultimately not statistically significant at the 95% 
confidence level; however, the distribution of survey responses does at least indicate a slight trend in 
favor of the ML-derived first-guess watch products.  Approximately 77% of survey responses indicated the 
ML guidance was at least “moderately” similar to the SPC watches, and 36% of responses found it to be 
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“very” or “extremely” similar.  Conversely, the Severe Timing Guidance was at least “moderately” similar 
in 67% of responses and “very” or “extremely” similar in only 28% of the results.  

Respondents generally rated the ML and Severe Timing Guidance first-guess watch products more 
favorably in regard to how well they captured the spatial and temporal domains of the true severe 
weather hazards, with bootstrapped mean scores of 3.58 and 3.37 respectively (Fig. 49b).  Additionally, 
respondent agreement was nearly identical for both products as indicated by a standard deviation of 0.82 
for the ML and 0.81 for the non-ML products.  As before, these minute differences between the product 
ratings were not found to be statistically significant at the 95% confidence level, but the response 
distribution of the ML guidance again trended towards somewhat higher ratings than that of the Severe 
Timing Guidance.  About 86% of responses stated that the ML first-guess watches captured the timing 
and spatial coverage of the observed NWS warnings and LSRs with at least “average” skill, and 61% said 
the model performance was “good” or “excellent.”  In comparison, the Severe Timing Guidance 
performance was rated as “average” or better in 83% of responses and “good” or “excellent” in 48% of 
the results.   

 

 
Figure 49 (a) Survey Q3 and (b) Q4 responses approximated as KDE curves.  Dashed vertical lines represent the mean 

score for each guidance product. 
 
 D6) GEFS vs. SREF – Severe Weather Forecasting 
 

As part of the plan to develop a Unified Forecast System (UFS) in NOAA, legacy operational 
systems, like the Short-Range Ensemble Forecast (SREF) system, are slated for retirement in the next few 
years.  To assess the readiness of the Global Ensemble Forecast System (GEFS) to replace the SREF for 
severe weather forecasting applications in the Day 2 to Day 3 time frame, an evaluation was performed 
during the 2022 HWT SFE.  Several relevant fields for severe weather forecasting were examined, including 
2-m dewpoint, MLCAPE, CAPE and shear combined probabilities, and the significant tornado parameter 
(STP), along with calibrated thunder and severe probabilities.  These fields were examined at 3-h intervals 
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during the convective Day 2 and Day 3 periods using a multi-panel webpage with the SPC mesoanalysis as 
the verification standard (Fig. 50).   
 

 

Figure 50 Example of the website comparison page for the GEFS comparison to the SREF during the 2022 HWT SFE.  
The SREF forecasts are shown in the top row with the GEFS forecasts in the bottom row .  The Day 3 forecasts 
of MLCAPE mean/spread (left column) and probability of exceeding 1000 J/kg (middle column) are shown 
for comparison with the SPC Mesoanalysis (right column) as the “observation” valid at 0300 UTC on 1 June 
2022.   

 
For the Day 3 environment forecasts, the GEFS severe weather fields were subjectively rated 

similar to SREF overall (Fig. 51).  There are some days/locations where the GEFS does better than the SREF 
and vice versa for the environmental fields, with the median and mean ratings centered on “about the 
same”.    Some of the common concerns with the GEFS environment forecasts noted by participants were 
the low instability bias and the overconfident solution at times.  The Day 3 calibrated guidance offers a 
different perspective on the GEFS performance relative to the SREF (Fig. 52).  The GEFS calibrated thunder 
and severe guidance was more frequently rated better than the SREF than for the environmental fields.  
In fact, the median rating for the GEFS calibrated fields was “slightly better” than the SREF calibrated 
fields.  Given that the methodologies for generating the calibrated guidance are very similar between the 
GEFS and SREF, it is hypothesized that the 20-year reforecast dataset with the GEFS offers the ability to 
improve upon SREF calibrated guidance, which is trained on one year of data. 

For the Day 2 environment forecasts, the results are similar to those seen on Day 3.  Overall, the 
GEFS and SREF forecasts for severe weather fields were comparable (Fig. 53), with the GEFS forecasts 
slightly favored for 2-m dewpoint and the SREF forecasts slightly favored for MLCAPE.  The Day 2 
calibrated guidance evaluation reveals slightly higher mean subjective ratings for the GEFS calibrated 
thunder and severe guidance compared to the SREF (Fig. 54); however, the Day 2 forecast improvement 
is less than that seen in the Day 3 forecasts, as indicated by a median rating of “about the same” between 
the calibrated guidance products. 
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Figure 51 Distributions of Day 3 subjective ratings (-2 to +2) by SFE participants of the GEFS environment forecasts 

compared to the SREF forecasts for ensemble fields of 2-m dewpoint (green), MLCAPE (blue), CAPE & shear 
(orange), STP (red).  The ratings represent how the GEFS compared to the SREF for these environment fields 
from -2: Much Worse; -1: Slightly Worse; 0 - About the Same; +1: Slightly Better; +2: Much Better. 
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Figure 52 Distributions of Day 3 subjective ratings (-2 to +2) by SFE participants of the GEFS calibrated forecasts 

compared to the SREF calibrated forecasts for thunder (light gray) and severe (dark gray).  The ratings 
represent how the GEFS calibrated guidance compared to the SREF calibrated guidance from -2: Much 
Worse; -1: Slightly Worse; 0 - About the Same; +1: Slightly Better; +2: Much Better. 

 

 

Figure 53 Distributions of Day 2 subjective ratings (-2 to +2) by SFE participants of the GEFS environment forecasts 
compared to the SREF forecasts for ensemble fields of 2-m dewpoint (green), MLCAPE (blue), CAPE & shear 
(orange), STP (red).  The ratings represent how the GEFS compared to the SREF for these environment fields 
from -2: Much Worse; -1: Slightly Worse; 0 - About the Same; +1: Slightly Better; +2: Much Better. 
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Figure 54 Distributions of Day 2 subjective ratings (-2 to +2) by SFE participants of the GEFS calibrated forecasts 

compared to the SREF calibrated forecasts for thunder (light gray) and severe (dark gray).  The ratings 
represent how the GEFS calibrated guidance compared to the SREF calibrated guidance from -2: Much 
Worse; -1: Slightly Worse; 0 - About the Same; +1: Slightly Better; +2: Much Better. 

 
 
e) Evaluation of Experimental Forecast Products 
 
 1) DAYS 1, 2, & 3 HAZARDS COVERAGE AND CONDITIONAL INTENSITY FORECASTS 
 

Each morning, participants contributed to a group outlook activity. These outlooks were led by 
pairs of facilitators, who went over experimental guidance covering the period of interest and then drew 
coverage probabilities and conditional intensity forecasts for tornadoes, wind, and hail separately. An 
hour was allotted for these activities. One group drew forecasts for the Day 3 time period, one group 
covered the Day 2 period, and two groups covered the Day 1 period. Of the Day 1 groups, one used 
experimental calibrated guidance to draw its forecasts, while the other did not use the experimental 
calibrated guidance. The next day, all participants provided subjective ratings of all four group forecasts 
for each hazard. Coverage and conditional intensity forecasts were evaluated separately. Conditional 
intensity forecasts were easier to evaluate for wind and hail forecasts relative to tornado forecasts, since 
significant wind and hail reports are more likely to be available as next-day observations compared to 
significant tornado reports, as tornado ratings are assigned following NWS damage surveys. Due to the 
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nature of the Day 2 and Day 3 forecasts and evaluation activities (e.g., Day 3 and Day 2 forecasts were not 
issued over the weekend, and Friday forecasts were not subjectively verified the next day), Day 3 forecasts 
were only available to subjectively evaluate on Thursday and Friday (forecasts valid Wednesday and 
Thursday), while Day 2 forecasts were available to evaluate on Wednesday–Friday (forecasts valid 
Tuesday–Thursday). 

 

 
Figure 55 Participant subjective ratings of tornado (top row), hail (middle row), and wind (bottom row) forecasts of 

coverage probabilities (left column) and conditional intensity forecasts (right column). Sample size for each 
distribution is annotated below the box of interest. 

 
Subjective scores for each hazard generally increased as the lead time decreased, particularly for 

the coverage probabilities (Fig. 55), with the Day 3 probabilities scoring the lowest and the Day 1 groups 
scoring the highest. The Calibrated Guidance and No Calibrated Guidance groups performed similarly for 
all hazards except tornado, where the No Calibrated Guidance group scores were significantly higher for 
the tornado coverage probabilities at the p<.05 level (Table 4). Mann-Whitney U Rank tests were used to 
determine statistical significance due to their independence from assumptions about the underlying 
distributions. Trends in the conditional intensity guidance differed between hazards, unlike the general 
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improvement seen in the coverage probabilities. The wind hazard showed improvements in the forecasts 
with shorter lead times, but the hail conditional intensity forecasts showed a decrease in the skill of the 
Day 2 forecasts relative to the Day 3 forecasts, before the scores increased again for the two Day 1 groups. 
Finally, the tornado conditional intensity guidance was very similar between groups, likely due to the lag 
in significant tornado information and the relatively limited tornado season CONUS-wide during spring 
2022. 

All differences between the tornado coverage probabilities were significant at least at the p<.05 
level, while none of the differences between the tornado conditional intensity ratings were significant 
(Table 1). The difference in hail and wind coverage probability ratings were also typically statistically 
significant, with the exception of the comparison between the two Day 1 forecasting groups. For all 
hazards evaluated, the differences in the conditional intensity forecasts were less likely to be statistically 
significant than coverage forecasts. 
 
Table 4 p-values from the Mann-Whitney significance test between subjective ratings of different outlook 

combinations. Green boxes with bold text show statistically significant values at p<.01, orange boxes show 
statistically insignificant differences, and yellow boxes with italicized text show differences that are 
significant at the p<.05 level but not at the p<.01 level. 

 Tornado 
Coverage 

Tornado 
Conditional 

Intensity 

Hail 
Coverage 

Hail 
Conditional 

Intensity 

Wind 
Coverage 

Wind 
Conditional 

Intensity 
Day 3/Day 2 

 
 

.0005 .1495 2.20x10-5 .1063 8.32x10-6 .025 

Day 2/Day 1 
Calibrated 
Guidance 

.0025 .4390 2.55x10-8 7.93x10-5 1.08x10-11 .116 

Day 2/Day 1 No 
Calibrated 
Guidance 

1.02x10-7 .3879 1.68x10-5 .0006 4.33x10-16 .0095 

Day 1 
Calibrated 

Guidance/No 
Calibrated 
Guidance 

.0101 
.3411 .0372 .1340 .219 .2078 

Day 3/Day 1 
Calibrated 
Guidance 

7.53x10-9 .1575 7.27x10-18 .0213 5.32x10-18 .0027 

Day 3/Day 1 No 
Calibrated 
Guidance 

2.41x10-14 .0812 1.75x10-14 .0722 3.23x10-22 .0001 
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 Participants were also asked about the relative importance of the coverage vs. the conditional 
intensity information if they were describing the forecast to someone for the previous day’s forecast, and 
slid a sliderbar between two extremes to reflect their views. The slider was initially positioned in the 
middle, to indicate that Intensity and Coverage were Equally important. Generally, participants weighted 
the coverage information higher in importance than the conditional intensity information (Fig. 56), with 
some even stating that only coverage of the severe hazard was important. Future work will break down 
these responses by case, as in cases when no significant severe weather was anticipated the conditional 
intensity forecasts may be judged as less important by participants. 
 

 
Figure 56 Participant responses to the question, “If you were explaining the forecast to someone, how would you 

weigh the importance of coverage vs. intensity for yesterday's forecast?” 
 
 2) WOFS-FOCUSED MESOSCALE DISCUSSION ACTIVITY 
 
 As part of the afternoon forecasting activities on the R2O Desk, experimental mesoscale 
discussions (MDs) were generated during the 2022 HWT SFE.  These MDs were generated daily in Google 
Slides (example provided in Fig. 57) by all R2O Group participants from 2:15-3:00 p.m. CDT covering a 
limited-area domain with the greatest severe potential across the CONUS.  There were two items of 
emphasis on these experimental MDs: 1) focus on a meso-beta corridor with the greatest potential for 
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severe weather over the next few hours and 2) explore the utility of WoFS to inform these MD products 
within the watch-to-warning time frame.  In a feedback survey following the SFE, the MD forecasting 
activity was commonly cited by participants as their favorite activity.  Participants noted that these 
forecasting activities provided an opportunity to use and experience the models and products first hand, 
which often led to an appreciation of the challenges faced by SPC forecasters in generating short-fused 
forecast products. 
 

 
Figure 57 Example of an experimental MD created on 5 May 2022 using WoFS output. 
 
 3) DAY 1 OUTLOOK UPDATES USING WOFS  
 
 In another afternoon activity in the R2O group, slightly less than half of participants had the 
opportunity to update the Day 1 forecast using the observations and updated model guidance, including 
guidance from WoFS. Participants could utilize the morning forecasts from either Day 1 group (calibrated 
guidance or no calibrated guidance), or start drawing their outlooks from scratch. As with the morning 
Day 1 forecasts, participants were asked to issue coverage probability and conditional intensity forecasts 
of tornadoes, hail, and wind. They had approximately one hour to complete these forecasts. Two 
operational NWS forecasters were assigned individual usernames and had their forecasts displayed as 
issued, while all other participants had their forecasts grouped into consensus forecasts. Consensus 
coverage probabilities were calculated by simply taking the average of all participant forecasts. Consensus 
conditional intensity contours were issued by determining if at least 50% of participants issued a 
conditional intensity contour at a given point. During the next-day subjective evaluation, participants 
evaluated the forecasts that they contributed to; so expert operational forecasters evaluated their own 
individual forecasts, while the other participants evaluated the consensus outlooks.   
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Figure 58 Self-reported starting points for participants generating updated Day 1 convective outlook forecasts. 
 
 Generally, participants chose to utilize one of the previously issued Day 1 forecasts as a starting 
point for their outlook updates (Fig. 58). However, a handful of participants started from scratch across 
the experiment, two of which were NWS expert forecasters. The Day 1 Calibrated and No Calibrated 
forecasts were each used a similar number of times, suggesting perhaps that the outlook that participants 
were involved in issuing each morning served as their starting point in the afternoon. Participant ratings 
of their updated forecasts were similar to the ratings for the initial Day 1 forecasts issued in the morning, 
except that the expert forecasters tended to give their forecasts lower ratings than the consensus forecast 
contributors assigned their forecasts (Fig. 59). Further objective verification should be undertaken to 
determine whether the expert updated forecasts truly were less skillful than the morning forecasts or the 
consensus, or whether the lower ratings are an effect of the operational forecasters having different 
mindsets when evaluating the forecasts relative to the rest of the participants. Preliminary stratification 
of the morning outlook’s ratings based on whether participants issued expert or consensus forecasts 
indicated that distributions were similar (not shown), so these differences are not solely due to forecasters 
generally scoring forecasts lower subjectively than other participants. 
 In addition to rating their updated forecasts, participants provided feedback on the difficulty in 
creating consensus outlooks generally and the utility of WoFS in generating their updated Day 1 outlooks 
(Fig. 60). Both of these questions were hazard agnostic, so participants should have considered all hazards 
in their responses, but may have put more weight on the most challenging or impactful hazard to forecast 
for a given day. Most frequently, participants found the conditional forecasts “somewhat difficult” to 
create, although more participants responded “extremely easy” relative to “extremely difficult”. The 
second most common response was that the forecasts were “Neither easy nor difficult” to create. These 
results indicate that the conditional intensity forecasts remain somewhat challenging to conceptualize, 
emphasizing the need for training and associated materials for the best grasp of what is being 
communicated by the conditional intensity forecasts and in what situations they provide the most benefit. 
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Figure 59 As in Fig. 57, but showing the Day 1 Calibrated and No Calibrated forecasts, and the expert and consensus 

forecast updates for Day 1. 
 

 
Figure 60 Participant responses to the question, “How difficult was it to create the conditional intensity forecasts 

yesterday?” 
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Figure 61 Participant responses to the question, “How useful was the Warn-on-Forecast System (WoFS) to you 

yesterday in issuing your forecasts?” 
 

Aligning with results from many prior SFEs, participants typically found WoFS to be “somewhat 
useful” or “very useful” (Fig. 61). Given the traction WoFS has gained with the forecasting community, 
WoFS developers may utilize these responses to investigate cases in which WoFS was either not useful 
(e.g., garnered “Not at all useful” or “Not very useful” responses) or WoFS was especially useful (e.g., 
garnered “Extremely useful” ratings). Three days had notable numbers of participants indicating that 
WoFS wasn’t very useful: 9 May (4 responses), 16 May (2 responses), and 17 May (2 responses). Four days 
had multiple “Extremely useful” responses as well, including one case that also had two “Not very useful” 
responses:  16 May (3 responses), 26 May (3 responses), 18 May (2 responses), and 1 June (2 responses). 
From these results, 16 May seems to warrant further investigation, due to the polarizing nature of the 
responses surrounding WoFS on this date. 
 
 4) FOCUS GROUP ON CONDITIONAL INTENSITY GUIDANCE 
 

As part of the afternoon activities of the 2022 SFE, participants took part in a focus group that 
furthered research on a two-year project titled “Enhancing the Storm Prediction Center’s Convective 
Outlook with Continuous Probabilities and Conditional Intensity Forecasts”. Participants were asked to 
take part in a 30–35-minute conversation about the use of conditional intensity information in SPC 
products. This activity aimed to understand how these innovations would or would not benefit weather 
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forecasters and their ability to communicate with partners and members of the public. To assess the views 
of the weather forecasters, participants were asked the following questions:  
 

1. What are your first impressions of a convective outlook product that more clearly delineates 
between coverage and intensity? What are some benefits and/or challenges to splitting these two 
pieces apart? 

2. How would you weigh coverage and intensity? Is one more important than the other? Do partners 
and members of the public ask for one more than the other? Should they always be displayed 
together, or can you separate the two? 

3. Right now, the difference between levels of conditional intensity is more qualitative in nature, do 
you like this, or do you think the levels should have more strict guidelines? 

 
These questions were asked of every focus group participant, though the facilitator did ask more probing 
and follow up questions based on the flow of the discussion. Many of these questions saw split reactions 
among the participants. A recurring benefit discussed during the “first impressions” question was that it 
would make it easier to visualize and communicate high intensity, low probability days. There was debate 
about whether or not conditional intensity information would be beneficial to the public, though many 
agreed it was information partners could both understand and benefit from. Some example quotes from 
this discussion are displayed below: 
 

● “From a DSS perspective, this information good for EMs. They’ll get trained to look for things in 
certain way and make decisions based on the information.” 

● “I like that you can communicate if you are not sure if the event is going to happen, and you can 
highlight that if it does it will be intense. But I am worried about how the public will respond 
because I don’t think they have a good grasp on what “hatched” means. I think it could be useful 
if it is communicated well.” 

● “As far as the public goes, I’m not even sure people know the difference between what intensity 
means and what coverage means.”      

 
When asked how they weighed the importance of coverage vs. intensity information, participants were 
well split, with some forecasters indicating that timing information may actually be more important than 
either coverage or intensity. This question was originally asked to try to determine which piece of 
information should be prioritized in graphics. With this framing in mind, there were also many instances 
when the idea of toggling layers on and off maps was suggested by the participants. 
 

● “In my experience, I weight more towards intensity. Even at the EM level, coverage is less well-
understood. The question tends to be “how bad will it be? How bad could this get?” “ 

● “People might assume they’ll be affected, so coverage info is more assumed by the public based 
on forecast.” 

● “People will tell you they care more about intensity, but real thing they care about is coverage 
(“Will I get hit?”)” 
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● “From a meteorology perspective, it is better to have one map with a toggle on and off perhaps - 
instead of comparing two images side by side.” 

 
Finally, when asked about more nebulous vs. specific definitions for the different levels of hatching used 
in SPC products — no hatch, single hatch, and double hatch — there was also disagreement over whether 
flexible vs. distinct definitions were better, though the challenges in communicating hatching were often 
brought up. Many participants liked the idea of SPC forecasters having flexibility when assigning a hatch, 
but also noted the challenges that nebulous definitions bring in terms of consistency. 
 

● “Having hard and fast definitions makes it easier for younger forecasters to make decisions, but 
with experience gut definitions kick in, making flexibility is better.” 

● “I think it's a tricky road to navigate, but regardless of the definitions, there needs to be a lot of 
thought before putting the hatch (or double hatch) out - it needs to mean something if you are 
going that high.” 

● “I like as a forecaster having a bit more freedom — I like the idea of it being more nebulous 
because there is more room for interpretation. As a communicator, if a message is not consistent 
then we have a problem.  One person might deem something worthy of a slight but another 
doesn't. We can get into problems where the nebulous bits lead to us not speaking the same 
language and not communicating effectively to the public.” 

 
More thorough analysis of themes and comments will be conducted this fall. While this analysis may 
reveal more consensus in the themes and sub-themes within the answers given by the participants, it is 
clear there was debate among the forecasting community over the ways in which conditional intensity 
should be used, visualized and communicated. 
 
 5) WOFS-BASED, 1-H OUTLOOKS WITH AND WITHOUT MACHINE-LEARNING GUIDANCE 
 
 During the 2:15-4pm CDT time period in the Innovation Group, participants generated severe 
hazard probabilities valid over 1-h time windows covering 2100-2200 UTC and 2200-2300 UTC.  Initial 
forecasts were generated during the 2:15-3:15pm period and final forecasts were generated during the 
3:15-3:45pm period.  After the final forecasts were issued, from approximately 3:45-4pm, participants 
completed a survey to gain insight on the use of ML-based forecast products from WoFS.  All of the 
Innovation Group afternoon forecasting activities were conducted in two sub-groups.  One group had 
access to calibrated, WoFS-based ML guidance when issuing their forecasts, while the other only used the 
uncalibrated WoFS products.  For both sets of initial and final forecasts, two forecasters were in the group 
that included ML guidance, while two other forecasters were in the group without ML guidance.  
Additionally, other participants in each group issued forecasts with and without the ML guidance similarly 
to the expert forecasters, which were combined into consensus forecasts.   
 The consensus forecasts were created by gridding the outlooks and converting them to 
continuous spatial probabilities using a method developed at SPC (Karstens et al. 2019).  Non-expert 
numerical coverage probability forecasts were averaged to create the consensus forecasts. If non-expert 
forecasters drew a significant severe contour, indicating a greater than 10% probability for significant 
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severe weather, a significant contour was drawn for the consensus forecasts at a point if at least half of 
participants drew a significant severe contour at that gridpoint.  On the first day that participants were 
engaged in the activity, facilitators made a brief presentation of training material.  It was emphasized that 
the 1-h time window outlooks should not be treated as the longer time window outlooks.  Given the short 
lead times, the outlooks should in theory be more accurate and precise, meaning that highlighted areas 
should have higher probabilities and cover smaller areas relative to SPC’s Day 1 Convective Outlooks. 
Additionally, participants were presented training material to familiarize them with the ML guidance 
products. An example set of forecasts from 1 June 2022 is shown in Figure 62.   
 

 
Figure 62 Innovation Group outlooks generated as part of the afternoon forecasting activity highlighting the 

probability of severe wind gusts covering the 1-h period 21-22Z on 1 June 2022:  WoFS Forecaster #1 (upper 
left), WoFS Forecaster #2 (upper middle), WoFS Consensus (upper right), WoFS ML Forecaster #1 (lower 
left), WoFS ML Forecaster #2 (lower middle), and WoFS ML Consensus (lower right).  Observed wind reports 
are indicated by the blue boxes.   

 
For the evaluation of these forecasts, participants categorized each outlook as “Excellent”, 

“Above Average”, “Average”, “Below Average”, and “Poor”.  Comparisons were made to the observed 
storm reports, MESH, NWS warnings, and practically perfect hindcasts, which were tuned with a smaller 
standard deviation to give higher amplitude and smaller areas.  There was a total of 72 outlooks that 
were evaluated each day (3 hazards x 4 times x 6 forecasts = 72). The primary goal of this exercise was to 
quantify the value of machine-learning to the experimental outlooks by comparing those made with and 
without the machine-learning guidance. To present the evaluation statistics quantitatively, the categories 
listed above were converted to a 1-5 rating scale where 5 corresponds to excellent, 4 to above average, 
and so on.  Then, the average ratings were computed for each hazard and forecaster.  The WoFS 
Forecasters #1 and #2 were averaged together along with WoFS ML Forecasters #1 and #2.  Furthermore, 
initial forecasts (issued 2:15-3:15pm) and final forecasts (issued 3:15-4pm) were averaged together to 
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create the composite forecast ratings in Figure 63.  Plots showing the results separated by the initial and 
final outlooks, as well as 21-22 and 22-23 UTC time periods, are available in the appendix.   

 

 

Figure 63 Average subjective ratings for WoFS, WoFS ML, WoFS Consensus, and WoFS ML Consensus for all three 
hazards averaged for the 21-22 and 22-23 UTC time periods, as well as the initial and final outlooks. p-values 
from a Welch’s t-test comparing the WoFS and WoFS ML outlooks are overlaid on the histogram bars for 
each hazard.   

 
 Overall, the WoFS ML forecasts were rated higher than WoFS, with the most dramatic differences 
for wind.  For the aggregate ratings, differences between WoFS and WoFS ML were statistically significant 
for all three hazards.  In addition, the average ratings for WoFS ML Consensus were higher than WoFS 
Consensus, but none of the differences reached the threshold for statistical significance.  These results 
indicate that ML can provide significant value on top of that provided by the raw WoFS products.   
 After evaluating a set of initial or final forecasts, participants who completed the hourly outlooks 
were asked questions about how confident they would be using WoFS overall, as well as the machine 
learning guidance specifically. Both groups were also asked how useful WoFS was for each individual 
hazard.  Overall, participants were typically at least “moderately confident” in using WoFS and the 
machine learning guidance after seeing the verification for the previous day (Fig. 64). These results held 
whether participants were in the group that had the ML guidance or in the group that did not have access 
to the ML guidance while issuing their forecast. Overall, the group that had the WoFS ML guidance was 
slightly more confident in utilizing WoFS for future events, though the differences in the distributions 
were not large. For the WoFS ML guidance, the group that utilized the guidance had slightly more 
polarized feelings of confidence in the ML guidance after seeing the verification: the ML group had more 
responses than the no-ML group in every category except “Moderately confident”, which was the middle 
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response. However, more forecasters in the ML group indicated that they would be “extremely 
confident” using the ML guidance going forward relative to those with ML guidance. 
 

 
Figure 64 Participant responses to the questions, (a) “After seeing the forecast verification, how confident would you 

be in using the WoFS while issuing a future forecast?” and (b) “After seeing the forecast verification, how 
confident would you be in using the WoFS machine learning guidance while issuing a future forecast?” 
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When asked about the usefulness of WoFS for the individual hazards, generally participants 
found the WoFS to be most useful for the hail and wind hazards, although many participants found utility 
for the tornado guidance as well (Fig. 65). The group utilizing the machine learning guidance found more 
utility from the WoFS for all hazards relative to those without machine learning guidance (i.e., more 
responses of “Very useful” or “Extremely useful”, suggesting that the machine learning tornado guidance 
is a useful hazard forecasting tool that benefits participants. Overall, participants found the WoFS to be 
quite useful for all hazards forecasted during the afternoon forecasting activity, demonstrating once more 
the utility of WoFS for short-term hazard forecasting. 
 

 
Figure 65 Participant responses to the question, “Please indicate the usefulness of WoFS for the following hazards 

today.” Dotted bars are from the group without access to ML guidance, while solid bars are from the group 
that had access to the ML guidance. 
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Figure 66 An example of local (left) and global (right) sets of predictors for the explainability graphics. Local predictor 

fields would change depending on the storm object, while global predictor fields would remain the same 
between objects. Participants were shown this image before asking which set of predictors they preferred.  

 
Finally, the machine learning group was asked a question about the explainability graphics, in 

which they were presented with a static image (Fig. 66) and asked their opinion on which sets of 
predictors would be preferred. Participants had access to the explainability graphics during the 
forecasting exercise, and a global perspective (e.g., consistent fields) was used for this initial attempt at 
incorporating explainability graphics into the forecasting process.  

All response options were selected by at least some participants, but the storm-specific fields 
were most commonly preferred, followed by “Do not prefer one or the other” (Fig. 67). Participants also 
had the option to write in a suggestion under the “other” response. Some participants used this response 
to indicate that they wanted more training with the product, to see the product demonstrated during an 
event, or to see the product demonstrated for an event with more storms. before making their selections. 
Others indicated a nuanced take, where different preferences would match to different scenarios. As one 
participant said, “I would prefer the global attributes if I were forecasting near the maximum in severe 
wind. If I were forecasting in an area that does not see stronger winds often, I may prefer the local 
variables”. Another requested a mixture, incorporating 2-3 parameters from each option onto the plot. 
This feedback will allow for iteration of the explainability products, and expanded utility of the machine 
learning guidance. 
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Figure 67 Participant responses to the question, “Would you prefer consistent fields (explaining how the same set 

of predictors contribute to the prediction regardless of the storm) or storm-specific fields (using a different 
set of predictors contribute to each storm’s prediction)?” An “other” response with a write-in was also 
available, and responses in this category are discussed in the text. 

 
SFE 2022 participants were also surveyed on their use of the WoFS ML guidance after they issued 

their forecasts each afternoon.  After completing both of their outlooks, participants were asked to 
complete a survey asking them about the number of products they used, and the confidence in their 
forecasts of each hazard. The group that used the machine learning guidance were asked a few additional 
questions, including aspects of the guidance that worked or did not work for them, and perceived utility 
of the guidance. Explainability graphics were also available to allow participants to see the underlying 
values of inputs to the machine learning guidance, and participants were also asked for feedback on that 
guidance. The analysis herein focuses mainly on the Likert Scale questions, and parsing of the open-ended 
question data collected is still underway. The analyses plotted here encompass 21 cases, with 260 
participant responses spanning those cases. 

Both the group that used WoFS and machine learning (WoFS ML) and the group solely using WoFS 
(WoFS no ML) answered questions about the confidence they had in each of their forecasts and the 
number of products used, to determine if the ML guidance influenced participant behavior. Overall, the 
people using the ML guidance tended to self-report using more products (Fig. 68). For participants who 
didn’t use the ML guidance, they most frequently looked at 6–10 different products, while the 
participants using the ML guidance more frequently looked at 11–15 products. The group using the ML 
guidance also more frequently responded that they used 16+ different products on the WoFS page. Initial 
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hypotheses were that the WoFS ML guidance may lead people to look at fewer products since the ML 
guidance ingests and accounts for multiple WoFS fields; this hypothesis does not seem to be supported 
by these findings. Instead, it may be that the participants simply add the ML guidance to the usual suite 
of products that they look at, increasing the overall number of products considered. Increased familiarity 
with and exposure to WoFS could change this initial behavior. 
 

 
Figure 68 Participant responses to the question, “Approximately how many different WoFS products did you look at 

today when formulating your forecasts?” Participants were given the response options shown here, i.e., the 
number of products was pre-binned in the responses.    
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Figure 69 Participant responses to the question “How confident are you in your forecasts of the following hazards 

today (considering both the 2100-2200 and the 2200-2300 time periods)?”. Participants responded 
separately for the (a) tornado, (b) hail, and (c) wind hazards. 

   
The afternoon survey also asked participants how confident they were in their forecasts of each 

individual hazard (Fig. 69). While differences were relatively small between the groups, participants using 
the ML guidance did have more responses of being “Very” or “Extremely” confident for their tornado and 



83 
 

hail forecasts. For the wind forecasts, the WoFS ML group was more likely to say that they were 
“moderately” or “very” confident in their forecasts. Conversely, the WoFS no ML group was more likely 
for all hazards to say that they were slightly confident in their forecasts. Overall, participants showed a 
Gaussian distribution of responses around the middle response, with the typical response from 
participants of both groups as “moderately” confident for all three hazards.   

For the question asking about the utility of the WoFS ML guidance, participants found the 
guidance to be somewhat or very useful most of the time (Fig. 70). The guidance was most useful for the 
wind threat, where a majority of participants rated the guidance as “very” useful after using it to make 
their forecasts. Very useful was the most common answer for the hail threat as well, while the tornado 
threat was most frequently rated as “somewhat” useful. Please note that these questions were asked 
prior to the verification of the forecasts, so participants did not yet know how their forecasts would turn 
out. When asked about the utility of the supplemental explainability graphics associated with each 
forecast object, participants found slightly less utility in them relative to the machine learning guidance 
itself (Fig. 71). However, the explainability graphics were still found to be useful, with the majority of 
participants indicating that they were somewhat useful for all hazards. Participants may need more time 
to explore the explainability graphics, since this is their first utilization in the SFE, and additional questions 
in the Evaluation of Yesterday’s Forecasts will provide feedback to refine these graphics for future usage. 
Some participant comments reflected a need to further understand the explainability graphics, but many 
participants commented that they liked the ideas behind these graphics. 

 

 

Figure 70 Participant responses to the question, “How useful was the machine learning guidance when creating 
forecasts of the following hazards today (considering both the 2100-2200 and the 2200-2300 time 
periods)?” for each hazard. 
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Figure 71 Participant responses to the question, “How useful were the explainability graphic when creating forecasts 

of the following hazards today (considering both the 2100-2200 and the 2200-2300 time periods)?” for each 
hazard. 
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4. Summary 
 
 The 2022 NOAA HWT Spring Forecasting Experiment (2022 SFE) was conducted virtually from 2 
May – 3 June by the SPC and NSSL with participation from forecasters, researchers, model developers, 
university faculty, and graduate students from around the world.  The primary goals of the 2022 SFE were 
to, (1) evaluate convection-allowing model and ensemble guidance for identifying optimal configurations 
of convection-allowing versions of FV3 and CAM ensembles, including several carefully designed and 
controlled experiments as part of the Community Leveraged Unified Ensemble (CLUE), (2) study how 
forecasters and meteorologists utilize CAMs and CAM ensembles, such as WoFS, and evaluate various 
experimental severe weather outlooks generated using WoFS and other CAM ensembles for lead times 
from one hour to 3 days, and (3) evaluate different CAM ensemble post-processed guidance with an 
emphasis on those using machine-learning algorithms. 
 
Several preliminary findings/accomplishments from the 2022 SFE are listed below:   
 

● Experimental short-term individual hazard outlooks were generated using WoFS with and without 
machine-learning guidance.  Additionally, WoFS was used for updating full-period hazard 
forecasts valid 2100-1200 UTC and corresponding conditional intensity guidance.   

o In the Innovation Group, subjective ratings indicated that using WoFS with machine-
learning provided a statistically significant advantage relative to outlooks produced using 
WoFS without machine learning. The biggest advantage provided      by the machine 
learning products was for the wind forecasts.  

o In the R2O group, one of the most popular activities was generating experimental 
mesoscale discussions using WoFS and other CAM guidance.  This activity provided an 
opportunity to synthesize a variety of information from the experimental models to 
generate forecast products first-hand, which often led to an appreciation of the 
challenges faced by SPC forecasters in generating short-fused forecast products. 

● Examined and assessed various methods to produce first-guess calibrated probabilistic hazard 
guidance based on forecast output from HREFv3, GEFS, and HRRRv4. 

o For tornadoes, an ML algorithm using HREF and SREF predictors known as “Nadocast” 
performed best overall for Day 1 lead times.  However, for days defined as “active” (i.e., 
SPC outlook tornado probabilities of 5% or greater) Nadocast and the STP-cal methods 
exhibited similar performance. 

o For hail, an HREF-based ML random forest algorithm performed particularly well for both 
Day 1 and Day 2 lead times.  Furthermore, the GEFS-based ML hail forecasts, which were 
evaluated separately, also performed notably well at Day 1-3 lead times.  

o For wind, the HREF-based ML random forest algorithm performed best for Day 1 and Day 
2 lead times. 

● Examined various deterministic CAM systems within the CLUE using HRRRv4 as a baseline. 
o In blinded evaluations, the RRFSp1 and RRFSp2 Control show skill approaching the 

HRRRv4 for simulated reflectivity and 2–5 km UH, 2-m dewpoint, and SBCAPE. 
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o The HRRRv4 performs best in terms of 2-m temperature forecasts relative to the other 
Deterministic Flagship models. 

o The HRRRv4 was most frequently ranked as the best model for simulated reflectivity and 
2–5 km UH, 2-m dewpoint, and SBCAPE. 

o For simulated reflectivity and updraft speed, the HRRRv4 performed subjectively better 
more frequently than the RRFSp2 Control. However, the 10-m wind speeds and the 0–3 
km UH were frequently better in the RRFSp2 Control relative to the HRRRv4. 

o The RadVTS control seemed to perform better in the first forecast hour relative to the 
RRFS BothVTS Control, but the runs performed similarly at forecast hour six. 

o SBCAPE values from FV3-based models continue to be too low in the first 18 hours of the 
forecasts. 

o Of the physics suites examined in B4, the NSSL microphysics, MYNN PBL scheme, and 
NOAH LSM perform best overall. For simulated reflectivity and 2–5 km UH, the NSSL 
microphysics performed better than the Thompson microphysics, but the SBCAPE 
forecast may be degraded relative to the fields produced by the Thompson microphysics.  

o Initial responses show better indication of severe weather threat from a 1-km horizontal 
grid spacing version of the NSSL-WRF, but further work remains to evaluate the full impact 
of 1-km horizontal grid resolution relative to 3-km horizontal grid resolution. 

● Examined various ensemble CAM systems within the CLUE using HREFv3 as a baseline. 
o In blinded evaluations, HREFv3 and RRFSp2e were consistently ranked highest and 

performed quite similarly among five unique CAM ensembles that were evaluated.  This 
is a noteworthy result since it marks the first time that a CAM ensemble has approached 
the skill of HREFv3. 

o In direct comparisons between HREFv3 and RRFSp2e, RRFSp2e had better 2-m dewpoint 
and SBCAPE forecasts and HREFv3 had better 2-m temperature forecasts.  The two 
performed similarly for 2-5 km AGL UH.   

o Comparing ensembles at 0-12 h lead times that used valid-time-shifting (VTS) approach 
with different observations ingested, a radar-only VTS approach performed slightly better 
than VTS using both radar and conventional observations during the 0-4 and 5-8 h 
forecast periods for 2-5 km AGL UH and composite reflectivity.  However, by the 9-12 h 
forecast period, the performance was similar.   

o In an experiment using ensemble sensitivity analysis, it was found that the subset 
ensemble with the smallest errors early in the forecast usually had no impact or slightly 
improved the probabilistic 2-5 km AGL UH forecasts. 

● Examined utility of WoFS for short-term severe weather forecasting application in the watch-to-
warning timeframe. 

o Comparing 2100 and 2300 UTC WoFS initializations with different numbers of members 
revealed that forecast probabilities derived from 9, 13, and 18 WoFS forecasts performed 
very similarly.  This suggests that gains in skill may be achieved from reducing membership 
but using more advanced physics, data assimilation, and/or enhancing the resolution, 
while using the same amount of computational resources.  

o Comparing different time-lagging strategies for 2100 and 2300 UTC WoFS initializations 
revealed that time-lagging slightly degraded the forecasts, especially for the earlier 
initializations.  Thus, time-lagging is likely not a viable strategy for WoFS.   
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● Various other projects and products were assessed and evaluated related to severe weather 
prediction, including machine-learning approaches for severe wind and convective mode 
probabilities, mesoscale and storm-scale analyses, and global ensemble forecasts for severe 
weather applications.   

o Machine-learning-based algorithms were used to diagnose the likelihood that severe 
wind reports were actually associated with winds ≥ 50 knots.  The primary results were: 
(1) the ML models that were trained with the additional database of sub-severe 
thunderstorm wind gusts generally received higher ratings than those models trained 
only with measured wind reports, (2) the impact of which specific ML model was used 
was relatively small in the subjective ratings, and (3) in construction of practically perfect 
hindcasts for severe wind, participants generally agreed that weighting the wind reports 
using the ML output was preferred over treating all wind reports equally.   

o Three unique ML algorithms were trained to provide probabilistic guidance on storm 
mode using output from the HRRR.  Distributions of subjective ratings revealed there was 
not a preferred algorithm, which is a favorable result for the partially supervised GMM 
approach that does not require extensive hand labeling.  Feedback from a new 
neighborhood probability product for convective mode was somewhat mixed, but 
participants commented about the potential utility, especially for summarizing convective 
mode evolution.   

o Three versions of 3D-RTMA with different backgrounds were evaluated.  The version that 
used HRRR performed best, while two FV3-based versions      usually performed slightly 
worse or about the same as the HRRR version.  Generally, the HRRR-based version 
handled the effects of convection on 2-m temperature better than the FV3-based versions 
through more accurate representation of the size, shape, and magnitude of thunderstorm 
outflows.   

o 15-minute forecasts of 10-m and 80-m winds from WoFS were used as a proxy for the 
analysis of severe wind.  Overall, the WoFS ensemble maximum winds were positively 
viewed in terms of lining up with preliminary severe wind reports, and the 80-m winds 
received higher subjective ratings and were found to better match the magnitudes of      
measured gusts than the 10-m winds. However, spurious convective gusts were 
occasionally present in the 80-m wind field even where convection did not form in reality.  
Thus, it may be useful to use observed reflectivity to filter out spurious members in the 
future.  

o To assess significant severe wind potential, maximum wind in the 0-2 km AGL layer and 
the integrated wind in the 0-2 km AGL layer were added as hourly maximum fields in the 
NSSL-WRF.  These new variables performed very well for the only significant severe wind 
event that occurred, but more cases are needed to learn more about performance 
characteristics.  

o Automated, county-based watch guidance was generated using an ML algorithm with 12Z 
HREFv3 guidance as predictors. The ML guidance performed similarly to SPC Severe 
Timing Guidance and both were favorably rated in capturing the severe weather 
evolution of the day. 
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o To assess the readiness of the Global Ensemble Forecast System (GEFS) to replace the 
SREF, an evaluation was performed during the 2022 HWT SFE.  For severe weather 
applications at Day 2 & 3 lead times, GEFS generally performed as well as the SREF for 
environment fields, except for MLCAPE, and better than the SREF for calibrated thunder 
and severe products.  
 

 Overall, the 2022 SFE was successful in testing new forecast products and modeling systems to 
address relevant issues related to the prediction of hazardous convective weather.  The findings and 
questions generated during the 2022 SFE directly promote continued progress to improve forecasting of 
severe weather in support of the NWS Weather-Ready Nation initiative.  In subsequent years, we plan to 
continue exploring the potential forecasting applications of Warn-on-Forecast, continue examining 
strategies for CAM ensemble design, accelerate work with our partners to optimize the UFS for CAM 
forecasting applications, and explore new ways to leverage AI/ML-based strategies for calibrating and 
post-processing CAM output to aid forecasters.  Additionally, we expect that this work will take on 
particular importance and assist with evidence-based decision making as NOAA moves forward with its 
plans for a Unified Forecasting System.  In the third year of a virtual experiment, we emphasize once again 
that – although we have been successful at accomplishing our mission – science-based discussions and 
establishing new collaborations are more difficult in the virtual environment.  Moving forward, we believe 
that the lessons learned from virtual experiments could benefit in a future hybrid approach involving both 
in-person and virtual participation.  
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APPENDIX  

Table A1 Weekly participants during the 2022 SFE. SFE facilitators included Adam Clark (NSSL), Israel Jirak (SPC), Dave Imy 
(retired SPC), Burkely Gallo (CIWRO/SPC), Kenzie Krocak (CIWRO/SPC/CRCM), Brett Roberts (CIWRO/SPC/NSSL), Kent 
Knopfmeier (CIWRO/NSSL), Chris Karstens (SPC), Eric Loken (CIWRO/NSSL), David Harrison (CIWRO/SPC), David Jahn 
(CIWRO/SPC), Jacob Vancil (CIWRO/SPC), Jeff Milne (CIWRO/SPC), Allie Brannan (CIWRO/SPC) and Nathan Dahl 
(CIWRO/SPC). 

Week 1 Week 2 Week 3 Week 4 Week 5 

2-6 May 9-13 May 16-20 May 23-27 May 31 May - June 3 

Philippe Papin (NHC) Tom Galarneau (CIWRO) Bill Gallus (ISU) Harald Richter (BoM) Craig Schwartz (NCAR) 

Maria Molina (NCAR) Allie Mazurek (CSU) Manda Chasteen (NCAR) Brice Coffer (NC State) Jordan Dale (WPO) 

Kevin Thiel (CIWRO/SPC) Robin Tamamachi (Purdue) Trudy Kidd (EC-OSPC) Noah Carpenter (OU SOM) Becky Adams-Selin (AER) 

Brad Vrolijk (EC-PASPC) Allison LaFleur (Purdue) Monica Vaswani (EC-OSPC) Clark Evans (UWM) Kelly Hobelman (EC-OSPC) 

Andy Elliott (USAF) Liz Tirone (ISU) Heather Pimiskern (EC-PASPC) Russ Schumacher (CSU) Katrina Eyk (EC-OSPC) 

Kelton Halbert (U. Wisc) Leigh Orf (U. Wisc) Jamie Foote (USAF) 
Georgina Da costa Barradas (EC-
QSPC) Sherry Williams (EC-OSPC) 

Victor Gensini (NIU) Aaron Hill (CSU) Andrew Winters (U. Colorado) Kristin Corbosiero (U. of Albany) 
Eric Van Lochem (EC-
PASPC) 

Keenan Eure (PSU) Allie Brannan (CIWRO/SPC) McKenzie Larson (U. Colorado) Jen Henderson (TTU) Nick Goldacker (NC State) 

Will Mayfield (DTC) Michelle Harold (DTC) Casey Davenport (UNCC) Roldolfo Hernandez (TTU) Felicia Guarriello (WPO) 

Ryan Sobash (NCAR) Justin Spotts (TAMU) Roger Riggin (UNCC) Dave Ahijevych (NCAR) Camille Hoover (USAF) 

Geeta Nain (Purdue) Charlie Becker (NCAR) Kelly Lombardo (PSU) Matthew Vaughan (St. Cloud) Rob Hepper (AWC) 

John Allen (CMU) 
Marion Mittermaier (UK 
Met) Alexandra Anderson-Frye (UW) Tatiana Gonzalez (NWS AFS) David Gagne (NCAR) 

Dan Harris (UK Met) Chris Smallcomb (NWS REV) Zhanxiang Hua (UW) Carlo Cafaro (UK Met) Eric Guillot (NWS AFS) 

Ka Yee Wong (GSL) Steve Willington (UK Met) Stephanie Avey (NWS AFS) Aurore Porson (UK Met) Brian Tang (Albany) 

Tyler Hasenstein (NWS 
MPX) Matt Bunkers (NWS UNR) Justin Gibbs (NWS WDTD) Matt Clark (UK Met) David King (NWS MTR) 

Binbin Zhou (EMC) Marcel Caron (EMC) Eswar Iyer (NWS AKQ) Brian Tentinger (NWS BGM) 
Jonathan Garner (NWS 
EKA) 

Xiaoyan Zhang (EMC) Shun Liu (EMC) David Thomas (NWS BUF) Mike Johnson (NWS MEG) Kyle Pallozzi (NWS LWX) 

Eric Aligo (EMC) David Dowell (GSL) Tony Wardle (UK Met) Mike Dutter (NWS AKQ) Jidong Gao (NSSL) 

Scott Kleebauer (NWS 
MAF) Justin Schultz (NWS DLH) Sebastian Cole (UK Met) Remington Lilya (St. Cloud) Jeff Beck (GSL) 

Jeff Duda (GSL) John Boris (NWS APX) Alyssa Clements (NWS ABQ) Gang Zhou (EMC) Chauncy Schultz (NWS BIS) 

Terra Ladwig (GSL) Austin Coleman (TTU) Dylan Lusk (NWS FFC) Matthew Pyle (EMC) Logan Dawson (EMC) 

Craig Evanego (NWS CTP) Jason Frazier (NWS PBZ) Justin Arnott (NWS GYX) Ben Blake (EMC) Geoff Manikin (EMC) 

Chris Noles (NWS PAH) Jay Engle (NWS OKX) Jacob Carley (EMC) Craig Hartsough (GSL) Edward Colon (EMC) 

Lee Britt (NWS DLH) Stephen Travis (NWS CTP) Matt Morris (EMC) Kyle Pederson (GSL) Linda Gilbert (NWS MQT) 

Andrew Snyder (NWS LWX) Tom Hultquist (NWS MPX) Chris MacIntosh (EMC) Jeffrey Hovis (NWS RLX) Curtis Alexander (GSL) 

Jonty Hall (BoM) Melody Sturm (BoM; M-Th) John Brown (GSL) Pete Wolf (NWS JAX) Harald Richter (BoM) 

Sean Ernst (OU) Aidan Kuroski (NWS MKX) Ed Szoke (GSL) Drew Shearer (OU) Cameron Miller (NWS MKX) 

 Aurora Bell (BoM; M-W) Matthew Campbell (NWS ILN) Dan Kubalek (OU) 
Thomas Winesett (NWS 
JAN) 

 Derrick Snyder (NWS PAH) Adam Gill (NWS BGM) Frank Alsheimer (NWS CAE) Logan Poole (NWS JAN) 

 Charles Smith (NWS MFR) Christopher Kent (BoM) Brendon Rubin-Oster (NWS LWX) Sarah Trojniak (WPC) 

   Alexander Majchrowski (BoM) Tony Wedd (BoM) 

   Dean Sgarbossa (BoM)  
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Table A2 Schedule for Tuesday – Friday.  On Mondays, the schedule is similar except the period 9-11:15am is devoted to 
training and introductory material.   

Time (CDT) R2O Group Innovation Group 
9:00 AM – 
9:15 AM  

Overview of Yesterday’s Severe Weather 
David Imy 

9:15 AM – 
11:00 AM 

Evaluation Orientation, Individual Working Time, and Discussion 

Group A: Calibrated 
Guidance 

Group B: 
Deterministic CAMs 

Group C: CAM Ensembles Group D: Medley 

11:00 AM - 
11:15 AM 

Break 
 

11:15 AM – 
11:30 AM 

Weather Briefing 
David Imy 

11:30 AM – 
12:30 PM 

Issue Day 1 Hazards Coverage and 
Conditional Intensity Forecasts (2 groups)  

Issue Day 2 and Day 3 Hazards Coverage and 
Conditional Intensity Forecasts (2 groups) 

No Cal. Guidance Cal. Guidance Day 2  Day 3 
12:30 PM – 
2:00 PM 

Lunch/Break (Tues., Thurs., Fri.     ) 
Lunch/Science Brown Bag (Wed.) 

2:00 PM – 
2:15 PM 

Update on Today’s Weather 
David Imy 

2:15 PM – 
3:00 PM 

Issue MD Product Issue 1-h outlooks (21-22, 22-23Z) 
WoFS & obs WoFS ML WoFS No ML 

3:00 PM – 
4:00 PM 

Update Day 1 
Outlook 

Focus Group Activity Issue 1-h outlooks (21-22, 22-23Z), End-of-
Day WoFS ML Survey 

WoFS & other 
guidance 

Conditional Intensity 
Discussion 

WoFS ML WoFS No ML 
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Table A3 Description of “non-hatched” (normal), “hatched”, and “double-hatch” conditional intensity forecasts for wind, 
hail, and tornadoes. 
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Figure A1 Average subjective ratings for WoFS, WoFS ML, WoFS Consensus, and WoFS ML Consensus for all three hazards 

averaged for the 21-22 and 22-23 UTC time periods for the initial forecasts.  
 
 

 
Figure A2 Same as Fig. A1, except for the final forecasts.  
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Figure A3 Same as A1, except for initial forecast ratings valid 2100 – 2200 UTC.  
 
 
 
 
 

 
Figure A4 Same as A1, except for final forecast ratings valid 2100 – 2200 UTC.  
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Figure A5 Same as A1, except for initial forecast ratings valid 2200 – 2300 UTC.  
 
 
 
 

 
Figure A6 Same as A1, except for final forecast ratings valid 2200 – 2300 UTC.  
 


